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Abstract

In this paper, we establish sufficient conditions for the
existence of solutions for a boundary value problem for frac-
tional differential equations of order 0 < α < 1 in Banach
spaces. These results are obtained using Banach contraction
fixed point theorem and Scheafer fixed point theorem.

1 Introduction

The fractional differential equations theory is a new branch of mathematics by
which many physical phenomena in various fields of science and engineering
can be modeled. Indeed, we can find numerous applications in viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc. [7, 9, 10, 11,
12, 13, 14, 15]. For some papers dealing with these fractional operators, see
[4, 5]. It is to note that there has been a significant development in fractional
differential equations in recent years, see [1, 3]. We can also cite the papers
of El-Sayed [6], Kilbas and Marzan [2], Mainardi [8], Momani and Hadid [16],
Momani et al. [17] and the references therein. In this paper, we are concerned
with the following problem

Dαy (t) = f (t, y (t)) , t ∈ J := [0, T ], 0 < α < 1

ay(0) + by(T ) =
∫ T

0
k(τ)y(τ)dτ, a, b ∈ R, a+ b 6= 0,

(1)
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where Dα denotes the fractional derivative of order α in the sense of Caputo,
and f : J × X → X is continuous, such that (X, ||.||) is a Banach space and
C(J,X) is the Banach space of all continuous functions from J → X endowed
with a topology of uniform convergence with the norm denoted by ||.|| and
k(t) ∈ L1(R).

2 Preliminaries

In the following, we give the necessary notation and basic definitions which
will be used in this paper. By C(J,R) we denote the Banach space of all con-
tinuous functions from J into R with the norm.
||y|| = supt∈J y(t).

Definition 2.1:[11, 18] The Riemann-Liouville fractional integral operator
of order α ≥ 0, for a continuous function f on [0,∞[ is defined as

Jαf(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),
(2)

where Γ(α) :=
∫∞

0
e−uuα−1du.

Definition 2.2:[11, 18] The fractional derivative of f ∈ Cn([0,∞[) in the
Caputo’s sense is defined as

Dαf(t) =

{
1

Γ(n−α)

∫ t
0
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(3)

Details on Caputo’s derivative can be found in [11, 18].
We give also the following lemmas:

Lemma 2.1 [14] For α > 0, the general solution of the fractional differen-
tial Dαx = 0 is given by

x(t) = c0 + c1t+ c2t
2 + ...cn−1t

n−1, (4)

where ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.

Lemma 2.2 [14] Let α > 0, then

JαDαx(t) = x(t) + c0 + c1t+ c2t
2 + ...cn−1t

n−1, (5)

for some ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.

We give also, the following lemma:
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Lemma 2.3 Let 0 < α < 1. A solution of the the problem (1) is given by:

y(t) =
1

a+ b

∫ T

0

k(τ)y(τ)dτ − b

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1f(τ, y(τ))dτ

+Jαf(t, y(t)).

(6)

Now, let us define the operator F : C(J,R)→ C(J,R) as follows:

Fy(t) =
1

a+ b

∫ T

0

k(τ)y(τ)dτ − b

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1f(τ, y(τ))dτ

+Jαf(t, y(t)).
(7)

3 Main Results

We prove the existence and the uniqueness of a solution for (1), by using the
Banach fixed point theorem. The following conditions are essential to prove
our results:

(H1) : ||f(t, x)− f(t, y)|| ≤ k1||x− y||; k1 > 0, x, y ∈ R, t ∈ J,

||k|| = supt∈J |k(t)| ≤M <∞.

(H2) : The function f is continuous.
(H3) : There exists a positive constant N such that

||f(t, x)|| ≤ N, t ∈ J, x ∈ R.

Our first result is given by:

Theorem 3.1 Suppose that the conditions (H1) and

k1
(a+ b)Tα +MT (α + 1) + bTα

(a+ b)Γ(α + 1)
< 1, (8)

are satisfied. Then the boundary value problem (1) has a unique solution in
C(J,R).

Proof: To prove this theorem, we need to prove that the operator F has a
fixed point on C(J,R). So, we shall prove that F is a contraction mapping on
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C(J,R).
Let x, y ∈ C(J,R). Then we can write

||F (y)− F (x)|| = || 1

a+ b

∫ T

0

k(τ)y(τ)dτ

− b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1f(τ, y(τ))dτ

+Jαf(t, y(t))− 1
a+b

∫ T
0
k(τ)x(τ)dτ

+ b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1f(τ, x(τ))dτ

−Jαf(t, x(t)||.

(9)

We can estimate (9) as follows:

||F (y)− F (x)|| ≤ 1

a+ b

∫ T

0

k(τ)||y(τ)− x(τ)||dτ

+ b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1||f(τ, y(τ))− f(τ, x(τ))||dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α−1||f(τ, y(τ))− f(τ, x(τ))||dτ.

(10)

By (H1), we get

||F (y)− F (x)|| ≤ k1
(a+ b)Tα +MT (α + 1) + bTα

(a+ b)Γ(α + 1)
||y − x||. (11)

Using the condition (8), we conclude that F is a contraction mapping.
Hence, by Banach fixed point theorem, there exists a unique fixed point
y∗ ∈ C(J,R) which is a solution of (1).

Our second result is based on the existence of solution using Scheafer fixed
point theorem. We have:

Theorem 3.2 Suppose that the conditions (H2) and (H3) are satisfied and

(a+ b) ≥ TM. (12)

Then the boundary value problem (1) has at least a solution in C(J,R).

Proof: We use Schaefer’s fixed point theorem to prove that F has a fixed
point on C(J,R). Our proof is be given in four steps.
Step1 : F is continuous on C(J,R).
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Let yn be a sequence such that yn → y in C(J,R). Then for each t ∈ J , we
have :

||F (yn)− F (y)|| = || 1

a+ b

∫ T

0

k(τ)yn(τ)dτ

− b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1f(τ, yn(τ))dτ

+Jαf(t, yn(t))− 1
a+b

∫ T
0
k(τ)y(τ)dτ

+ b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1f(τ, y(τ))dτ

−Jαf(t, y(t)||.

(13)

Therefore,

||F (yn)− F (y)|| ≤ 1

a+ b

∫ T

0

k(τ)||yn(τ)− y(τ)||dτ

+ b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1||f(τ, yn(τ))− f(τ, y(τ))||dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α−1||f(τ, yn(τ))− f(τ, y(τ))||dτ.

(14)

Since f is a continuous function, we have

||F (yn)− F (y)|| → 0, n→∞. (15)

Step2 : F maps bounded sets into bounded sets in C(J,R). Indeed, it is enough
to show that for any v > 0, there exists a positive constant m such that for
each y ∈ Bv = {y ∈ C(J,R); ||y|| ≤ v}, we have ||F (y)|| ≤ m.
It is clear that

||Fy(t)|| = || 1

a+ b

∫ T

0

k(τ)y(τ)dτ − b

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1f(τ, y(τ))dτ

+Jαf(t, y(t))||.
(16)

And then,

||Fy(t)|| ≤ || 1

a+ b

∫ T

0

k(τ)||y(τ)||dτ

+ b
(a+b)Γ(α)

∫ T
0

(T − τ)α−1||f(τ, y(τ))||dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α||f(t, y(t))||dτ.

(17)



12 M.A. Bengrine, Z. Dahmani

Thanks to (H3), we can write:

||Fy(t)|| ≤ Mv

a+ b

∫ T

0

dτ +
bN

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1dτ

+ N
Γ(α)

∫ t
0
(t− τ)αdτ, t ∈ J.

(18)

Thus,

||Fy(t)|| ≤ (a+ b)NTα +MTvΓ(α + 1) + bNTα

(a+ b)Γ(α + 1)
:= m, (19)

and consequently,
||Fy(t)|| ≤ m. (20)

Step3 : F maps bounded sets into equicontinuous sets of C(J,R).
Let t1, t2 ∈ J ; t1 < t2 and let y ∈ Bv. Then, we have

||Fy(t2)− Fy(t1)|| = || 1

a+ b

∫ T

0

k(τ)y(τ)dτ

− b
(a+b)Γ(α)

∫ t2
0

(t2 − τ)α−1f(τ, y(τ))dτ

+Jαf(t2, y(t2))− 1
a+b

∫ T
0
k(τ)y(τ)dτ

+ b
(a+b)Γ(α)

∫ t1
0

(t1 − τ)α−1f(τ, y(τ))dτ

−Jαf(t1, y(t1)||.

(21)

Therefore,

||Fy(t2)− Fy(t1) ≤ 1

Γ(α)

∫ t1

0

(t2 − τ)α−1 − (t1 − τ)α−1||f(τ, y(τ))||dτ

+ 1
Γ(α)

∫ t1
t2

(t2 − τ)α−1||f(τ, y(τ))||dτ

≤ N
Γ(α)

∫ t1
0

(t2 − τ)α−1 − (t1 − τ)α−1dτ

+ N
Γ(α)

∫ t1
t2

(t2 − τ)α−1dτ

(22)

Thus

||Fy(t2)− Fy(t1)|| ≤ 2N

Γ(α + 1)
(t2 − t1)α +

N

Γ(α + 1)
(tα1 − tα2 ). (23)
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As t1 → t2, the right-hand side of the above inequality tends to zero. Then, as
a consequence of Steps 1,2,3 together with the Arzela-Ascoli theorem, we can
conclude that F is completely continuous.

Step4 : Now, we prove that the set

Ω = {y ∈ C(J,R), y = λF (y), 0 < λ < 1} (24)

is bounded.

Let y ∈ Ω, then y = λF (y) for some 0 < λ < 1. Thus for each t ∈ J, we
have :

y(t) = λ
[ 1

a+ b

∫ T

0

k(τ)y(τ)dτ − b

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1f(τ, y(τ))dτ

+ 1
Γ(α)

∫ t
0
(t− τ)αf(t, y(t))dτ

]
.

(25)
Thanks to (H3), we can write

1

λ
||y(t)|| ≤ λ

[ 1

a+ b

∫ T

0

k(τ)||y(τ)||dτ − b

(a+ b)Γ(α)

∫ T

0

(T − τ)α−1||f(τ, y(τ))||dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α||f(t, y(t))||dτ

]
≤ MT ||y(τ)||

a+b
+ bNTα

(a+b)Γ(α+1)
+ NTα

Γ(α+1)
.

(26)
Therefore,

||y|| ≤ λ(a+ b)

a+ b− λMT

[ bNTα

(a+ b)Γ(α + 1)
+

NTα

Γ(α + 1)

]
. (27)

By the condition (11), we have

||Fy|| <∞. (28)

This shows that the set is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that F has a fixed point which is a solution of the problem
(1).

4 Open Problems

At the end, we pose the following problems:
Open Problem 1. Using fractional differential operator of order α in the
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sense of Caputo for a continuous function f on J = [0, T ] × R under what
sufficient conditions do Theorem 3.1 and Theorem 3.2 hold for 1 < α < 2?
Open Problem 2. Is it possible to generalize Theorems 3.1 and Theorem 3.3
for α, n < α < n+ 1?
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