
Int. J. Open Problems Compt. Math., Vol. 5, No. 4, December 2012
ISSN 1998-6262; Copyright c©ICSRS Publication, 2012
www.i-csrs.org

A pedal triangle inequality with the exponents
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Abstract

In this paper we establish a new pedal triangle inequality with the exponent
variables. Some related interesting conjectures verified by the computer are put
forward.

Keywords: pedal triangle, interior point, exponent, transformation.

1 Introduction

Let P be an interior point of the 4ABC and let D,E, F denote the feet of the
perpendiculars from P to sidelines BC, CA, AB. Denote the semiperimeter,
area, circumradius and inradius of the 4ABC by s, S, R, r, and denote the
area, circumradius and inradius of the pedal 4DEF by Sp, Rp, rp respectively.
Following the notation of [1] and [2], put BC = a, CA = b, AB = c,PA =
R1, PB = R2, PC = R3, PD = r1, PE = r2, PF = r3 (see Figure 1).
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From the published literatures (see, e.g., [1], [2]), there are few inequalities
involving triangles and its an interior point with exponential variables. In
[3], the author established several geometric inequalities related to the pedal
triangle. One of the results is the following:
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where the exponent k satisfies k ≥ 1. The equality holds if and only if 4ABC
is equilateral and P is its center.

The author also conjectured that inequality (1) is reverse when−1 ≤ k < 0.
In other words, the following inequality

Rk
1 + Rk

2 + Rk
3 ≤ 2Rk + (2Rp)

k (2)

holds for 0 < k ≤ 1. Recently, Wang Zhen [4] has proved the special case
k = 1:

R1 + R2 + R3 ≤ 2(R + Rp). (3)

It is easy to prove that
4rp ≤ R. (4)

Inequalities (3) and (4) prompt the author to find that

R1 + R2 + R3 ≥ 2Rp + 8rp. (5)

That is to say, if we change R in (3) by a smaller value 4rp, then the inequality
is reverse. Generally, we have the following conclusion:

Theorem 1.1 If k ≥ 1 be a real number, then for any interior point P of
the 4ABC holds:

Rk
1 + Rk

2 + Rk
3 ≥ (2Rp)

k + 2(4rp)
k. (6)

If k = −1, then the inequality is reverse. The equalities hold if and only if
4ABC is equilateral and P is its center.

From the theorem we have the following reciprocal type inequality:
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It seems to be difficult to prove (7) directly. We will give a simple proof by
using a known inequality involving two triangles.

Incidentally, it does not discriminate strength or weakness between the
beautiful linear inequality (5) and the famous Erdös-Mordell inequality (see,
e.g., [1], [2], [5], [6], [7]):

R1 + R2 + R3 ≥ 2(r1 + r2 + r3), (8)

which is given a new proof recently by the author in [5].
The purpose of this paper is to prove Theorem 1.1 and put forward some

related open problems (conjectures).



18 Jian Liu

2 Proof of Theorem 1.1

Lemma 2.1 For any 4ABC and positive real numbers x, y, z, we have

s− a

x
+

s− b

y
+

s− c

z
≥ s(xa + yb + zc)

yza + zxb + xyc
, (9)

with equality if and only if x = y = z.

In [3], the author has pointed out that inequality (9) can be deduced from
Klamkin’s the polar moment of the inertia inequality (see [2], [8], [9], [10]).

Lemma 2.2 If k ≥ 1 is a real number, then we have
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, (10)

with equality if and only if P is the incenter of 4ABC.

Proof. We first prove the case k = 1. Putting x = r1, y = r2, z = r3 in (9),
then using the following two identities:

ar1 + br2 + cr3 = 2S, (11)

ar2r3 + br3r1 + cr1r2 = 4RSp, (12)

we get
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+
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+
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. (13)

Hence
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,

where we used the inequality:

a

r1

+
b

r2

+
c

r3

≥ 2s

r
(14)

which is the special case k = 1 of inequality (17) below. This completes the
proof of the case k = 1 of (10).

Next, we prove the case k > 1.
When k > 1, using the weighted power means inequality, we have that

[
(s− a)r−k

1 + (s− b)r−k
2 + (s− c)r−k

3

(s− a) + (s− b) + (s− c)

] 1
k

≥ (s− a)r−1
1 + (s− b)r−1

2 + (s− c)r−1
2

(s− a) + (s− b) + (s− c)
.
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Hence
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with equality if and only if r1 = r2 = r3, namely P is the incenter of 4ABC.
From (13) and (15) we get
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, (16)

where k > 1. On the other hand, from [1] (P285), we have the following
inequality:
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≥ 2s

rk
, (17)

where k > 0 or k < −1. The equality holds if and only if P is the incenter of
4ABC. Adding up (16) and (17) then dividing both sides by s, we see that
inequality (10) holds for k > 1.

Combing with the arguments of the two cases above, (9) holds for k ≥ 1.
It is easy to know that the equality in (10) holds only when P is the incenter
of the 4ABC. The proof of Lemma 2.2 is complete.

Lemma 2.3 If the following inequality:

f(a, b, c, R1, R2, R3, r1, r2, r3) ≥ 0 (18)

holds for any interior P of the 4ABC, then the inequality holds by the follow-
ing K transformation:
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.

The above K transformation is called reciprocation transformation (see [2],
[3], [7], [11]).

Lemma 2.4 [12] Let Sa, Sb, Sc be the area of 4PBC,4PCA,4PAB re-
spectively. Then we have

SaR1 + SbR2 + ScR3 ≥ 4RSp, (19)

with if and only if P is the incenter of the 4ABC.

Lemma 2.5 For any 4ABC and 4A′B′C ′ with sides a′, b′, c′ and circum-
radius R′, we have

a′

a
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b′

b
+
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c
≤ R′

(
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R
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1

r

)
, (20)

with equality if and only if the two triangles are both equilateral.
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The author [13] has given the following equivalent version of (20):

sin A′

sin A
+

sin B′

sin B
+

sin C ′

sin C
≤ R + r

r
(21)

and its generalization:

√
r2r3

sin A′

sin A
+
√

r3r1
sin B′

sin B
+
√

r1r2
sin C ′

sin C
≤ R + r. (22)

In addition, inequality (20) was also given by D.Veljan and S.H.Wu in [14].
We now prove our Theorem 1.1.
Proof. We first prove the case k ≥ 1.
In [3], the author has pointed out the following relations under K trans-

formation:

S → S

2r1r2r3R
,R → R1R2R3

4r1r2r3R
,Sp → S

2R1R2R3Rp

.

According to these relations, it is easily known that

S

RSp

→ 4Rp (23)

under K transformation. In addition, using r = S
s

we have that

r → S

SaR1 + SbR2 + ScR3

(24)

under the same transformation.
If we apply K transformation to inequality (10) of Lemma 2.2, then make

using of (23) and (24), we obtain

Rk
1 + Rk

2 + Rk
3 ≥

2(SaR1 + SbR2 + ScR3)
k

Sk
+ (2Rp)

k.

From this and inequality (19), we immediately obtain

Rk
1 + Rk

2 + Rk
3 ≥ (2Rp)

k + 2

(
4RSp

S

)k

, (25)

where k ≥ 1. Again, noticing the following known inequality (see [12]):

Sp

rp

≥ S

R
, (26)

the required inequality (6) follows from (25) at once.
Now, we prove the case k = −1.
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Exchanging the two triangles in (20), then we get
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≤ R

(
1

R′ +
1

r′

)
. (27)

(r′ is the circumradius of 4A′B′C ′)Namely,
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)
. (28)

If we assume that 4A′B′C ′ just is the pedal 4DEF , then

sin A
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+
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+
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DE
≤ 1

2

(
1
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+
1
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)
. (29)

Noticing that EF = R1 sin A etc., inequality (7) follows from the above in-
equality immediately. It is easily concluded that the equalities of (6) and (7)
hold if and only if 4ABC is equilateral and P is its center (We omit the
details). This completes the proof of Theorem 1.1.

3 Open Problems

In this section we propose some related conjectures.
For Theorem 1.1, we put forward the following two conjectures checked by

the computer:

Conjecture 3.1 If 0 < k < 1, then inequality (6) holds.

Conjecture 3.2 If 0 < k < 1, then we have
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+
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Rk
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≤ 1

(2Rp)k
+

2

(4rp)k
. (30)

In [3], the author conjectured that the inequality of Lemma 2.2 holds for
−1 ≤ k < 0. Now, we have known this conjecture is not valid, and then the
following related conjecture is brought up:

Conjecture 3.3 If 0 < k < 1, then inequality (10) holds.

If the above conjecture holds true, from the proof of Theorem 1.1, it is
easily seen that Conjecture 3.1 holds. In addition, if Conjecture 3.3 is true
then we will know that the preceding inequality (1) and “ The Five Circles
Inequality ” in [3]:

Rk
a + Rk

b + Rk
c ≥ Rk + 2k+1Rk

p (31)
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(where Ra, Rb, Rc are the circumradius of4PBC,4PCA,4PAB respectively)
also hold for 0 < k < 1 (the case when k ≥ 1 is proved in [3]). There is one
thing we should pay attention to: When 0 < k < 1, it is easy to prove that
inequality (15) holds reversely. This means that if we want to prove Conjecture
3.3 then we have to use other methods different from the proof of Lemma 2.2.

From the proved inequality (3) and Erdös-Mordell inequality (8), we have
the following beautiful inequality:

r1 + r2 + r3 ≤ Rp + R. (32)

Considering its exponential generalization, we propose

Conjecture 3.4 If 0 < k ≤ 1, then we have

rk
1 + rk

2 + rk
3 ≤ Rk

p + 21−kRk. (33)

If k < 0, then the inequality is reverse.

The case k < 0 of Conjecture 3.4 is just equivalent to
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+
1
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2

+
1

rk
3

≥ 1

Rk
p

+
2k+1

Rk
, (34)

where k > 0. This inequality and Euler inequality Rp ≥ 2rp in the pedal
triangle DEF inspire the author to pose the following conjecture:

Conjecture 3.5 If 4ABC is an acute-angled triangle and 0 < k ≤ 4, then
we have
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1

+
1

rk
2

+
1

rk
3

≥ 1

(2rp)k
+

2k+1

Rk
. (35)

Remark 3.1 The triangles unexplained in this note are all arbitrary.

In [3], the author has proved inequality (10) is also valid for k ≤ −1. In
other words, we have that

rk
1 + rk

2 + rk
3 ≥ 2rk +

(2RSp)
k

Sk
, (36)

where k ≥ 1. Noticing that

2RSp

S
≥ r1r2r3

r2
, (37)

which is equivalent to (14) by (12). So we have the following interesting in-
equality among r1, r2, r3 and r:

rk
1 + rk

2 + rk
3 ≥ 2rk +

(r1r2r3)
k

r2k
, (38)

(k ≥ 1)with equality if and only if P is the incenter of the 4ABC. This
inequality leads us to find the the following dual acute triangle inequality:
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Conjecture 3.6 If 4ABC is acute-angled triangle and k ≥ 1, then

Rk
1 + Rk

2 + Rk
3 ≥ 2Rk +

(R1R2R3)
k

R2k
, (39)

with equality if and only if P is the circumcenter of 4ABC.

The above conjecture can also be stated as follows: Suppose k ≥ 1, and

λ1 =
(

R1

R

)k
, λ2 =

(
R2

R

)k
, λ3 =

(
R3

R

)k
, then the the following inequality:

λ1 + λ2 + λ3 − λ1λ2λ3 ≥ 2 (40)

holds for any interior point P of the acute-angled 4ABC.
Finally, we put forward three interesting conjectures for Cevian triangles,

which are similar to the previous several inequalities.
Let P be an interior point of 4ABC and let AP,BP, CP cut BC, CA,AB

at L,M, N respectively (see Figure 2). Put PL = e1, PM = e2, PN = e3.
Denote by Ra, Rb, Rc the circumradius of 4PBC,4PCA,4PAB and denote
by Rq, rq the circumradius, inradius of the Cevian triangle LMN respectively.

Figure 2
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For inequality (31), we present the following similar conjecture:

Conjecture 3.7 If k ≥ 3
4
, then we have

Rk
a + Rk

b + Rk
c ≥ (2Rq)

k + 2k+1rk. (41)

For inequality (34), we propose the following dual conjecture:

Conjecture 3.8 If k > 0, then we have

1
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1

+
1
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2

+
1

ek
3

≥ 1

Rk
q

+
2k+1

Rk
. (42)

From (26) and (36), we obtain inequality:

rk
1 + rk

2 + rk
3 ≥ 2rk + (2rp)

k, (43)

where k ≥ 1. The similar conjecture inequality about for Cevian triangles is

Conjecture 3.9 If k ≥ 2.1, then we have

ek
1 + ek

2 + ek
3 ≥ 2rk + (2rq)

k. (44)
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