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Abstract
In recent years, convex optimization solved very large practi-

cal engineering problems reliably and efficiently. In this paper,
we present an extension of an algorithm for convex quadratic pro-
gramming using a new technique for finding a class of search direc-
tions and the strategy of the central path, for convex optimization
under linear constraints. To solve the initialization problem, we
have introduced a weighted vector with the property that starting
from an initial feasible centred point, it generates iterates that si-
multaneously, gets closer to optimality and closer to centrality. Fi-
nally, the favorable polynomial complexity bound for the algorithm
is deserved namely, O (

√
n log(x

tz
ε

)) iterations.
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tion, primal-dual target following algorithm, equivalent algebraic transforma-
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1 Introduction

Interior point methods (IPMs) are among the most effective methods for
solving wide classes of optimization problems because of their polynomial
complexity and their numerical efficiency. Since the seminal work of Kar-
markar [7] in 1984, many researchers have proposed and analyzed various
IPMs for linear optimization (LO) and a large amount of results have been
reported. The search directions play an important role in finding new algo-
rithms. Peng, Roos and Terlaky [8] have defined the notion of self regular
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functions and, using this concept, they have introduced a new class of search
directions for LO. They have extended their results also to complementar-
ity problems (CP ), semidefinite optimization (SDO) and second order cone
optimization (SOCO), and they have proved polynomial complexity of dif-
ferent large-update algorithms, which use self-regular functions to obtain new
directions. An alternative method has been introduced in [3, 5, 6] by applying
algebraically equivalent transformations to the nonlinear centering equation
of the system, which defines the central path, this method has been applied
with success to LO. Recently, the new technique for LO has been extended
also to convex quadratic optimization (CQP ) by Achache [1] and to monotone
mixed linear complementarity problems (LCPs) by Wang, Cai and Yue [9].
The method of algebraically equivalent transformation has been generalized
also to weighted path following algorithms. The first results for (LO) have
been given in [3]. Later on, Achache [2] generalized this algorithm to standard
LCPs. The above mentioned algebraic transformations, followed by a Newton
step, resulted in small-update feasible algorithms, and for all of them the best
known iteration bounds were obtained.

In this paper we extend the weighted path following algorithms to linearly
constrained convex optimization (LCCO).

The paper is organized as follows: in Section 2 the statement of the problem
is presented. In Section 3, we deal with the new search directions and the
description of the algorithm. In Section 4 we state its complexity analysis.
Finally, we present some conclusions in Section 5.

The notations used in this paper are the following: <n is the set of n
dimentional vectors and <m×n is the set of m× n matrices. Moreover, <++ is
the set of strictly positive real numbers.

2 Statement of the problem

Let us consider the following problem

(P )


min f(x)
Ax = b
x > 0

and its dual

(D)


max bty + f(x)− (∇f(x))tx

Aty + z −∇f(x) = 0
z ≥ 0,y∈ <m
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Where A ∈ <m×n, rank(A) = m, b ∈ <m , c ∈ <n and f : <n → < is a
convex and twice continuously differentiable function.

we impose the following assumptions:
(H1): Kint = {x ∈ <n/ Ax = b, x > 0} the set of strictly feasible points

of (P ) is non-empty,
(H2): Tint = {y ∈ <m, z ∈ <n/Aty + z −∇f(x) = 0, z > 0} the set of

strictly feasible points of (D) is non-empty.
In order to introduce an interior point method to solve (P ), we associate

the following barrier minimization problem

(Pµ)


min f(x)− µ

n∑
i=1

riln xi = fµ(x)

Ax = b
x > 0

where µ > 0 be the barrier parameter and r = (r1, r2, ..., rn) ∈ <n++ is a
weighted vector introduced to ensure that the initial point (x0, z0, µ0) verified
δ(x0z0, µ0) = 0 < 1 (proximity measure which will be defined bellow), if ri =
1, ∀i then the weighted central path coincides with the classical one. Hence,
this approach can be seen as a generalization of central path methods.

The resolution of (Pµ) is equivalent at that of (P ) with that if x∗(µ) is an
optimal solution of (Pµ) then x∗ = lim

µ→0
x∗(µ) is an optimal solution of (P ).

The problem (Pµ) is a convex optimization problem and then its first order
optimality conditions are:

(1)


Aty + z −∇f(x) = 0, x > 0, z > 0

Ax = b
xz = µr

where xs denotes the coordinatewise product of the vectors x and s, hence
xs = (x1z1,x2z2, ..., xnzn)T .

Under the assumptions H1, H2 and A has full rank the system (1) has a
unique solution. [10]

3 New search directions

The basic idea behind this approach is to replace the nonlinear equation:
xz = µr in (1) by an equivalent equation: ψ(xz) = ψ(µr )

where ψ is a real valued function on [0,+∞) and differentiable on (0,+∞)
such that ψ(t) and ψ′(t) > 0, for all t > 0. Then the system (1) can be written
as the following equivalent form:
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(2)


Aty + z −∇f(x) = 0, x > 0, z > 0

Ax = b
ψ(xz) = ψ(µr)

Applying Newton’s method for the system (2) we get

(3)


At∆y + ∆z −∇2f(x)∆x = 0

A∆x = 0
zψ′(xz)∆x+ xψ′(xz)∆z = ψ(µr)− ψ(xz)

Now, the following notations are useful for studying the complexity of the
proposed algorithm.

Let (x, z) be a pair of primal-dual interior feasible solutions, we introduce
the scaled vectors v and d as follows:

v =
√
xz, d =

√
x
z

Using d we can rescale both x and z to the same vector:

d−1x = dz = v

we also use d to rescale ∆x and ∆z :px = d−1∆x, pz = d∆z and py = ∆y

Now we may write

x∆z + z∆x = xd−1d∆z + zdd−1∆x = v( px + pz)

Hence, Newton’s direction is determined by the following linear system:

(4)


−H̄px + Ātpy + pz = 0

Āpx = 0
px + pz = pv

whereD = diag(d), H̄ = D∇2f(x)D is symmetric and positive semidefinite

matrix, Ā = AD and pv = ψ(µr)−ψ(v2)
vψ′(v2) ,

As in [3], we shall consider the following function:

ψ(t) =
√
t

with ψ′(t) = 1
2
√
t
> 0 for all t > 0.

We have from (4):

(5)


−H̄px + Ātpy + pz = 0

Āpx = 0
px + pz = 2(

√
µr − v)
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We define for all vector v the following proximity measure by:

δ(xz, µ) = δ(v, µ) = ‖pv‖
2min(

√
µr)

=
‖√µr−v‖
min(

√
µr)

were ‖‖ is the Euclidean norm (l2 norm) and min(x) = min {x1, x2, ..., xn} .
We introduce another measure σc(r) = max(r)

min(r)

Now, we get the short-step primal-dual algorithm to solve (LCCO) :

—————————————————————————–

Algorithm for linearly constrained convex optimization

—————————————————————————–

• Input: (x(0), y(0), z(0)) where x(0) is a strictly feasible solution of (P ),
(y(0), z(0)) is a strictly feasible solution of (D), µ(0) > 0 an initial barrier
parameter, 0 < θ < 1 and ε is the accuracy parameter.

• compute: r = x(0)z(0)

µ0

• begin:

– x = x(0), z = z(0), v =
√
xz,d=

√
x
z
, µ = µ(0)

– while xtz > ε do

– Solve the Newton system of equations in (5)

– compute ∆x = dpx,∆z = d−1pz and ∆y = py

– compute x = x+ ∆x, y = y + ∆y, z = z + ∆z and µ = (1− θ)µ .

• end.

Remark 1 By construction, to guarantee that the next Newton iterate
x̂ = x+ αx∆x > 0 and ẑ = z + αz∆z > 0 for any α ∈ IR, it suffices to
set

αx =

{
min (−xi/∆xi) si ∆xi < 0

1 si ∆xi ≥ 0

αz =

{
min (−zi/∆zi) si ∆zi < 0

1 si ∆zi ≥ 0
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4 Complexity analysis

Let
qv = px − pz
we have
px = 1

2
(pv + qv), pz = 1

2
(pv − qv)

pxpz = 1
4
(p2v − q2v) and ‖qv‖ ≤ ‖pv‖

This last result follows directly from the equality
‖pv‖2 = ‖qv‖2 + 4pTx pz We have δ(v, µ) ≥ ‖qv‖

2min(
√
µr)

since
pTx pz = pTx H̄px ≥ 0
because The function f is convex, thus the matrices ∇2f(x) and H̄ are

symmetric and positive semidefinite.
In the following Lemma, we state a condition which ensures the feasibility

of the full Newton step. Let x̂ = x+ ∆x and ẑ = z + ∆z, be the new iterate
after a full Newton step.

Lemma 1 : Let δ = δ(v, µ) < 1.Then the full Newton step is strictly
feasible, hence: x̂ > 0 and ẑ > 0.see [3]

In the next lemma we show that δ < 1 is sufficient for the quadratic con-
vergence of the Newton process.

Lemma 2 : Let x̂ = x+ ∆x and ẑ = z+ ∆z be the iteration obtained after
a full Newton step with v =

√
xz and v̂ =

√
x̂ẑ

Suppose δ = δ(v, µ) < 1.Then δ(v̂, µ) ≤ δ2

1+
√
1−δ2

thus δ(v̂, µ) < δ2(v, µ), which means quadratic convergence of the Newton
step.

Proof:
We have:

(v̂)2 = x̂ẑ
= (x+ ∆x)(z + ∆z)

= v2 + vpv + p2v
4
− q2v

4

= µr − p2v
4

+ p2v
4
− q2v

4

= µr − q2v
4

we obtain

min(v̂)2 ≥ min(µr)− ‖
q2v‖∞
4
≥ min(µr)− ‖qv‖

2

4
≥ min(µr)(1− δ2)

and this relation yields:
min(v̂) ≥ min(

√
µr)(
√

1− δ2)
Furthermore
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δ(v̂, µ) = 1
min
√
µr

∥∥∥ µr−v̂√
µr+v̂

∥∥∥
≤ ‖µr−v+‖

min
√
µr(min(

√
µr+v̂))

≤ ‖µr−v+‖
(min

√
µr)2(1+

√
1−δ2)

≤ ‖q2v‖
(min

√
µr)2(1+

√
1−δ2)

≤ δ2

1+
√
1−δ2

In the next lemma we state an upper bound for the duality gap obtained
after a full Newton step.

Lemma 3 : Let x̂ = x + ∆x and ẑ = z + ∆z. Then the duality gap is:

(x̂)T ẑ = µ ‖
√
r‖2 − ‖qv‖

2

4
,

hence

(x̂)T ẑ ≤ µ
∥∥∥√x0z0

µ0

∥∥∥2 .
Proof:

From
(v̂)2 = µr − q2v

4

we have x̂ẑ = µr − q2v
4

we obtain (x̂)T ẑ = eT (x̂ẑ) = µeT r − eT q2v
4

= µ ‖
√
r‖2 − ‖qv‖

2

4

this relation yields

(x̂)T ẑ ≤ µ ‖
√
r‖2 = µ

∥∥∥√x0z0

µ0

∥∥∥2
The next lemma discusses the influence on the proximity measure of the

Newton process followed by a step along from the central path. We assume
the parameter µ will be reduced by a constant factor (1− θ).

Lemma 4 : Let δ = δ(xz, µ) < 1 and µ+ = (1 − θ)µ, where 0 < θ < 1.
Then

δ(v̂, µ̂) ≤ θ
1−θ

√
σc(r) + 1

1−θ δ(v̂, µ).

Furthermore, if δ ≤ 1
2
, θ = 2

5
√
σc(r)n

and n ≥ 4 then we get δ(v̂, µ̂) ≤ 1
2
.

Proof:

δ(v̂, µ̂) =
‖√µ̂r−v̂‖
min
√
µ+r

=
‖√µ̂r−√µr+√µr−v̂‖

min
√
µ̂r

≤ ‖
√
µ̂r−√µr‖

min
√
µ+r

+
‖√µr−v̂‖
min
√
µ+r

= 1−
√
1−θ√

1−θ ( ‖µr‖
min(

√
µr)

) + 1√
1−θ δ(v̂, µ)

≤ 1−
√
1−θ√

1−θ

√
nσc(r) + 1√

1−θ δ(v̂, µ)

Now let θ = 2

5
√
nσc(r)

, observe that σc(r) ≥ 1 and for n ≥ 4 we obtain

θ ≤ 2
10

if δ(v, µ) ≤ 1
2

then from lemma 2 we deduce δ(v̂, µ) ≤ 1
4
. finally, the

above relation yields: δ(v̂, µ̂) ≤ 1
2
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In the next lemma we calculate an upper bound for the total number of
iterations performed by the algorithm.

Lemma 5 :Assume that x0 and z0 are strictly feasible, µ0 = (x0)T z0

n
>

0, r = x0z0

µ0
. Moreover, let xk and zk be the vectors obtained after k iterations.

Then the inequality (xk)T zk ≤ ε is satisfied for k ≥
[
1
θ

log (x0)T z0

ε

]
Proof:

after k ierations, we get µk = (1− θ)kµ0. using lemma 3 we find that

(xk)T zk ≤ µk ‖
√
r‖2 = (1− θ)kµ0 ‖

√
r‖2 = (1− θ)k

∥∥∥√µ0r
∥∥∥2

= (1− θ)k
∥∥∥√x0z0∥∥∥2 = (1− θ)k(x0)T z0

hence (xk)T zk ≤ ε hold if (1− θ)k(x0)T z0 ≤ ε
taking logarithms, we obtain
k log(1− θ) + log(x0)T z0 ≤ log ε
Using the inequality −log(1 − θ) ≥ θ we deduce that the above relation

holds if
kθ ≥ log (x0)T z0

ε
⇒ k ≥ 1

θ
log (x0)T z0

ε

For the default θ = 2

5
√
σc(r)n

, we obtain the following Corollary.

Corollary 1 : Suppose that x0 ∈ Kint, z
0 ∈ Tint, and let µ0 = (x0)T z0

n
.

If θ = 2

5
√
σc(r)n

, then the algorithm requires at most
[
5
2

√
σc(r)n log (x0)T z0

ε

]
iterations. For the resulting vectors we have (xk)T zk ≤ ε.

5 Conclusion:

We have introduced a new weighted algorithm for solving linearly constrained
convex optimization. The method of finding, an initial point close to the cen-
tral path is based on the introduction of the weighted vector and a new search
direction is based on an equivalent algebraic transformation of the centering
equation from the system, which defines the central path. Polynomial com-
plexity is proved, and the best known iteration bound is obtained.

6 Open problem

This method deserve some supplementary efforts to calculate, the initial point
close to the central path and the search directions. This, until now, is the
object of researchers aiming to reduce the iteration cost.
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