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1 Introduction

Random fixed point theorems are stochastic gereralization of classical fixed
point theorems. Random fixed point theorems for contraction mappings on
separable complete metric spaces have been proved by several authors (See
e.g. Spacek [22], Hans [9],[10], Bharucha-Reid [7], Itoh [11], Mukherjee [17],
Tan and Yuan [23]) and many others.
In 1982, Sessa [20] introduced the notion of weakly commuting mappings.
Jungck [12] defined the notion of compatible mappings to generalize the con-
cept of weak commutativity and showed that weakly commuting mappings are
compatible but the converse is not true [12] and a number of fixed point the-
orems have been obtained by various authors utilizing this notion ([13], [14],
[16], [18], [19], [21]). Jungck further weakens the notion of compatibility by
introducing the notion of weak compatibility and in [15], Jungck and Rhoades
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further extended weak compatibility to the setting of single-valued and multi-
valued maps.
Afterwards, Beg [1], [2], Beg and Shahzed [5], [6] studied the structure of
common random fixed points and random coincidence points of a pair of com-
patible random operators and proved the random fixed points theorems for
contraction random operators in Polish spaces. Some random fixed point the-
orems for weakly compatible random operators under generalized contractive
conditions are proved by Beg [3], Beg and Abbas [4] and others.
In continuation of these results, motivated and inspired by the contraction
condition by Ćirić [8], we obtain a common random fixed point for weakly
compatible six mappings on a nonempty closed subset of a separable Hilbert
space H.

2 preliminaries

Let (Ω,Σ) be a measurable space, H stands for a separable Hilbert space and
C a nonempty closed subset of H.
A mapping ξ : Ω → C is called measurable if ξ−1(B

⋂
C) ∈ Σ for every Borel

subset B of H.
A mapping T : Ω × C → C is said to be random mapping if for each fixed
x ∈ C, the mapping T (., x) : Ω→ C is measurable.
A measurable mapping ξ : Ω→ C is called a random fixed point of the random
mapping T : Ω× C → C if T (w, ξ(w)) = ξ(w) for each w ∈ Ω.

Definition 2.1 [15] Let H be a separable Hilbert space. Random operators
S, T : Ω×H → H are weakly compatible if T (w, ξ(w)) = S(w, ξ(w)), for some
measurable mappings ξ, then T (w, S(w, ξ(w))) = S(w, T (w, ξ(w))) for every
w ∈ Ω.

Condition (A) Six random mappings E,F, S, T, A and B : Ω × C → C,
where C is a nonempty closed subset of a separable Hilbert space H are said
to satisfy condition A if

‖E(w, x)− F (w, y)‖2 ≤ α(w)max{‖S(w,A(w,x))−T (w,B(w,y))‖2

, ‖S(w,A(w,x))−E(w,x)‖2,‖T (w,B(w,y))−F (w,y)‖2

, ‖S(w,A(w,x))−F (w,y)‖2+‖T (w,B(w,y))−E(w,x)‖2
2

}

+ β(w)max{‖S(w,A(w,x))−E(w,x)‖2,‖T (w,B(w,y))−F (w,y)‖2}

+ γ(w)[‖S(w,A(w,x))−F (w,y)‖2+‖T (w,B(w,y))−E(w,x)‖2], (1)

for x, y ∈ H and w ∈ Ω, where α, β, γ : Ω → [0, 1) are measurable mappings
such that for all w ∈ Ω,

2α(w) + β(w) + 4γ(w) < 1. (2)
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3 Main Results

In this section, we prove a common random fixed point theorem for six weakly
compatible random operators in separable Hilbert spaces without using the
continuity of these mappings.

Theorem 3.1 Let C be a nonempty closed subset of a separable Hilbert
space H. Let E,F, S, , T, A and B : Ω × C → C be six random mappings
defined on C such that for w ∈ Ω, E,F, S, T, A and B : Ω × C → C satisfy
condition (A) and the following conditions:

E(w,H) ⊆ T (w,B(w,H)) , F (w,H) ⊆ S(w,A(w,H)). (3)

EA = AE, SA = AS, BF = FB, TB = BT. (4)

The pairs (E, SA) and (F, TB) are weakly compatible. (5)

Then E,F, S, , T, A and B have a unique common random fixed point.

Proof. Let the function g0 : Ω → C be an arbitrary measurable function
on Ω. By (3) there exists a function g1 : Ω → C such that for w ∈ Ω,
T (w,B(w, g1(w))) = E(w, g0(w)) and for this function g1 : Ω → C we can
choose another function g2 : Ω → C such that for w ∈ Ω, F (w, g1(w)) =
S(w,A(w, g2(w))) and so on. By using the method of induction we can define
a sequence of functions yn(w), w ∈ Ω as following:

y2n(w) = T (w,B(w, g2n+1(w))) = E(w, g2n(w)),

y2n+1(w) = S(w,A(w, g2n+2(w))) = F (w, g2n+1(w)), w ∈ Ω, n = 0, 1, 2, ..(6)

From (1) we have for w ∈ Ω that

‖y2n(w)− y2n+1(w)‖2 = ‖E(w, g2n(w))− F (w, g2n+1(w))‖2

≤ α(w)max{‖S(w,A(w,g2n(w)))−T (w,B(w,g2n+1(w)))‖2

, ‖S(w,A(w,g2n(w)))−E(w,g2n(w))‖2

, ‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2

, ‖S(w,A(w,g2n(w)))−F (w,g2n+1(w))‖2+‖T (w,B(w,g2n+1(w)))−E(w,g2n(w))‖2

2
}

+ β(w)max{‖S(w,A(w,g2n(w)))−E(w,g2n(w))‖2

, ‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2}

+ γ(w)[‖S(w,A(w,g2n(w)))−F (w,g2n+1(w))‖2

+ ‖T (w,B(w,g2n+1(w)))−E(w,g2n(w))‖2].

It follows by (6) that

‖y2n(w)− y2n+1(w)‖2 ≤ α(w) max{‖y2n−1(w)− y2n(w)‖2
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, ‖y2n−1(w)− y2n(w)‖2, ‖y2n(w)− y2n+1(w)‖2

,
‖y2n−1(w)− y2n+1(w)‖2 + ‖y2n(w)− y2n(w)‖2

2
}

+ β(w) max{‖y2n−1(w)− y2n(w)‖2

, ‖y2n(w)− y2n+1(w)‖2}
+ γ(w)[‖y2n−1(w)− y2n+1(w)‖2

+ ‖y2n(w)− y2n(w)‖2]. (7)

By parallelogram law, ‖x+ y‖2 + ‖x− y‖2 ≤ 2[‖x‖2 + ‖y‖2] which implies that
‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 − ‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2, we can write

‖y2n−1(w)− y2n+1(w)‖2 = ‖y2n−1(w)− y2n(w) + y2n(w)− y2n+1(w)‖2

≤ 2‖y2n−1(w)− y2n(w)‖2 + 2‖y2n(w)− y2n+1(w)‖2.
(8)

Applying (8) in (7) we get

‖y2n(w)− y2n+1(w)‖2 ≤ α(w) max{‖y2n−1(w)− y2n(w)‖2

, ‖y2n−1(w)− y2n(w)‖2, ‖y2n(w)− y2n+1(w)‖2

,
2‖y2n−1(w)− y2n(w)‖2 + 2‖y2n(w)− y2n+1(w)‖2

2
}

+ β(w) max{‖y2n−1(w)− y2n(w)‖2

, ‖y2n(w)− y2n+1(w)‖2}
+ γ(w)[2‖y2n−1(w)− y2n(w)‖2

+ 2‖y2n(w)− y2n+1(w)‖2]. (9)

If ‖y2n(w)− y2n+1(w)‖2 > ‖y2n−1(w)− y2n(w)‖2, then by (9) and (2) we have

‖y2n(w)− y2n+1(w)‖2 < 2α(w)‖y2n(w)− y2n+1(w)‖2 + β(w)‖y2n(w)− y2n+1(w)‖2

+ 4γ(w)‖y2n(w)− y2n+1(w)‖2

= (2α(w) + β(w) + 4γ(w))‖y2n(w)− y2n+1(w)‖2

< ‖y2n(w)− y2n+1(w)‖2.

A contradiction.
It follows that ‖y2n(w)− y2n+1(w)‖2 ≤ ‖y2n−1(w)− y2n(w)‖2.
Applying this in (9), we obtain

‖y2n(w)− y2n+1(w)‖2 ≤ (2α(w) + β(w) + 4γ(w))‖y2n−1(w)− y2n(w)‖2.

Hence

‖y2n(w)− y2n+1(w)‖ ≤ (2α(w) + β(w) + 4γ(w))
1
2‖y2n−1(w)− y2n(w)‖.
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By (2) we have k = (2α(w) + β(w) + 4γ(w))
1
2 < 1.

In general,

‖yn(w)− yn+1(w)‖ ≤ k‖yn−1(w)− yn(w)‖,

which implies that

‖yn(w)− yn+1(w)‖ ≤ kn‖y0(w)− y1(w)‖, w ∈ Ω.

Now, we will prove that for w ∈ Ω, {yn(w)} is a Cauchy sequence in C.
For positive integer p we have

‖yn(w)− yn+p(w)‖ = ‖yn(w)− yn+1(w) + yn+1(w)

+ ...+ yn+p−1(w)− yn+p(w)‖
≤ ‖yn(w)− yn+1(w)‖+ ‖yn+1(w)− yn+2(w)‖
+ ...+ ‖yn+p−1(w)− yn+p(w)‖
≤ [kn + kn+1 + ...+ kn+p−1]‖y0(w)− y1(w)‖
= kn[1 + k + k2 + ...+ kp−1]‖y0(w)− y1(w)‖

≤ kn

1− k
‖y0(w)− y1(w)‖

→ 0 (as n→∞), w ∈ Ω.

It follows that {yn(w)} is a Cauchy sequence and hence is convergent in the
closed subset C of H. So that, {yn(w)} → {y(w)} as n → ∞ for w ∈ Ω.
Since C is closed, {y(w)} is a function from C to C and consequently the
subsequences {E(w, g2n(w))}, {F (w, g2n+1(w))}, {T (w,B(w, g2n+1(w)))} and
{S(w,A(w, g2n+2(w)))} of {yn(w)} also converge to {y(w)}.
Now, since E(w,H) ⊆ T (w,B(w,H)), there exists h(w) ∈ C such that

y(w) = T (w,B(w, h(w))) for w ∈ Ω. (10)

Using (1) we obtain

‖E(w,g2n(w))−F (w,h(w))‖2 ≤ α(w)max{‖S(w,A(w,g2n(w)))−T (w,B(w,h(w)))‖2

, ‖S(w,A(w,g2n(w)))−E(w,g2n(w))‖2

, ‖T (w,B(w,h(w)))−F (w,h(w))‖2

, ‖S(w,A(w,g2n(w)))−F (w,h(w))‖2+‖T (w,B(w,h(w)))−E(w,g2n(w))‖2
2

}

+ β(w)max{‖S(w,A(w,g2n(w)))−E(w,g2n(w))‖2

, ‖T (w,B(w,h(w)))−F (w,h(w))‖2}

+ γ(w)[‖S(w,A(w,g2n(w)))−F (w,h(w))‖2

+ ‖T (w,B(w,h(w)))−E(w,g2n(w))‖2].
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Taking the limit on both sides of the above inequality as n → ∞, and using
(10) we obtain

‖y(w)− F (w, h(w))‖2 ≤ α(w) max{‖y(w)− y(w)‖2, ‖y(w)− y(w)‖2

, ‖y(w))− F (w, h(w))‖2

,
‖y(w)− F (w, h(w))‖2 + ‖y(w)− y(w)‖2

2
}

+ β(w) max{‖y(w)− y(w)‖2, ‖y(w)− F (w, h(w))‖2}
+ γ(w)[‖y(w)− F (w, h(w))‖2 + ‖y(w)− y(w)‖2].

It follows that

‖y(w)− F (w, h(w))‖2 ≤ (α(w) + β(w) + γ(w))‖y(w)− F (w, h(w))‖2,

which leads to the following

y(w) = F (w, h(w)) for w ∈ Ω. (11)

From (10) and (11), we have F (w, h(w)) = T (w,B(w, h(w))).
Since {F, TB} are weakly compatible, then they commute at their coincidence
point h(w), i.e.

F (w, T (w,B(w, h(w)))) = T (w,B(w,F (w, h(w))))

⇒ F (w, y(w)) = T (w,B(w, y(w))) (12)

Similarly, since F (w,H) ⊆ S(w,A(w,H)), there exists f(w) ∈ C such that

y(w) = S(w,A(w, f(w))) for w ∈ Ω. (13)

Again using (1), we have

‖E(w,f(w))−F (w,g2n+1(w))‖2 ≤ α(w)max{‖S(w,A(w,f(w)))−T (w,B(w,g2n+1(w)))‖2

, ‖S(w,A(w,f(w)))−E(w,f(w))‖2

, ‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2

, ‖S(w,A(w,f(w)))−F (w,g2n+1(w))‖2+‖T (w,B(w,g2n+1(w)))−E(w,f(w))‖2

2
}

+ β(w)max{‖S(w,A(w,f(w)))−E(w,f(w))‖2

, ‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2}

+ γ(w)[‖S(w,A(w,f(w)))−F (w,g2n+1(w))‖2

+ ‖T (w,B(w,g2n+1(w)))−E(w,f(w))‖2].

Taking the limit on both sides of the above inequality as n → ∞, and using
(13) we obtain

‖E(w, f(w))− y(w)‖2 ≤ α(w) max{‖y(w)− y(w)‖2, ‖y(w)− E(w, f(w))‖2
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, ‖y(w)− y(w)‖2

,
‖y(w)− y(w)‖2 + ‖y(w)− E(w, f(w))‖2

2
}

+ β(w) max{‖y(w)− E(w, f(w))‖2, ‖y(w)− y(w)‖2}
+ γ(w)[‖y(w)− y(w)‖2 + ‖y(w)− E(w, f(w))‖2].

It follows that

‖E(w, f(w))− y(w)‖2 ≤ (α(w) + β(w) + γ(w))‖E(w, f(w))− y(w)‖2.

Hence

E(w, f(w)) = y(w) for w ∈ Ω. (14)

Using(13) and (14), we have S(w,A(w, f(w))) = E(w, f(w)).
Since {E, SA} are weakly compatible, then they commute at their coincidence
point f(w), i.e.

S(w,A(w,E(w, f(w)))) = E(w, S(w,A(w, f(w))))

⇒ S(w,A(w, y(w))) = E(w, y(w)). (15)

Now, we show the existence of a random fixed point. Consider for w ∈ Ω, and
by parallelogram law we have that,

‖E(w,y(w))−y(w)‖2 = ‖E(w,y(w))−y2n+1(w)+y2n+1(w)−y(w)‖2

≤ 2‖E(w,y(w))−y2n+1(w)‖2+2‖y2n+1(w)−y(w)‖2

= 2‖E(w,y(w))−F (w,g2n+1(w))‖2+2‖y2n+1(w)−y(w)‖2

≤ 2α(w)max{‖S(w,A(w,y(w)))−T (w,B(w,g2n+1(w)))‖2

, ‖S(w,A(w,y(w)))−E(w,y(w))‖2,‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2

, ‖S(w,A(w,y(w)))−F (w,g2n+1(w))‖2+‖T (w,B(w,g2n+1(w)))−E(w,y(w))‖2

2
}

+ 2β(w)max{‖S(w,A(w,y(w)))−E(w,y(w))‖2

, ‖T (w,B(w,g2n+1(w)))−F (w,g2n+1(w))‖2}

+ 2γ(w)[‖S(w,A(w,y(w)))−F (w,g2n+1(w))‖2

+ ‖T (w,B(w,g2n+1(w)))−E(w,y(w))‖2]+2‖y2n+1(w)−y(w)‖2.

It follows that

‖E(w, y(w))− y(w)‖2 ≤ 2α(w)max{‖S(w,A(w,y(w)))−y(w)‖2,‖S(w,A(w,y(w)))−E(w,y(w))‖2

, ‖y(w)−y(w)‖2, ‖S(w,A(w,y(w)))−y(w)‖2+‖y(w)−E(w,y(w))‖2
2

}

+ 2β(w)max{‖S(w,A(w,y(w)))−E(w,y(w))‖2,‖y(w)−y(w)‖2}

+ 2γ(w)[‖S(w,A(w,y(w)))−y(w)‖2+‖y(w)−E(w,y(w))‖2]

+ 2‖y(w)−y(w)‖2.
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Using (15) we obtain

‖E(w, y(w))− y(w)‖2 ≤ (2α(w) + 4γ(w))‖E(w, y(w))− y(w)‖2

< ‖E(w, y(w))− y(w)‖2.

It follows that

E(w, y(w)) = y(w). (16)

From (15) and (16) we have

E(w, y(w)) = S(w,A(w, y(w))) = y(w) for w ∈ Ω. (17)

Similarly, we can show that

F (w, y(w)) = T (w,B(w, y(w))) = y(w) for w ∈ Ω. (18)

It follows from the construction of {yn(w)} for w ∈ Ω that {yn(w)} is a se-
quence of measurable functions and since y(w) is a pointwise limit of a mea-
surable sequence {yn(w)}, it follows that y(w) is also measurable function and
by (17) and(18), y(w) : Ω → C is a common random fixed point of E,F, SA
and TB.
Next we prove y(w) = S(w, y(w)) = A(w, y(w)) = T (w, y(w)) = B(w, y(w)).
Since AE = EA and using (1) we have

‖A(w,y(w))−y(w)‖2 = ‖A(w,E(w,y(w)))−F (w,y(w))‖2=‖E(w,A(w,y(w)))−F (w,y(w))‖2

≤ α(w)max{‖S(w,A(w,A(w,y(w))))−T (w,B(w,y(w)))‖2

, ‖S(w,A(w,A(w,y(w))))−E(w,A(w,y(w)))‖2,‖T (w,B(w,y(w)))−F (w,y(w))‖2

, ‖S(w,A(w,A(w,y(w))))−F (w,y(w))‖2+‖T (w,B(w,y(w)))−E(w,A(w,y(w)))‖2
2

}

+ β(w)max{‖S(w,A(w,A(w,y(w))))−E(w,A(w,y(w)))‖2

, ‖T (w,B(w,y(w)))−F (w,y(w))‖2}

+ γ(w)[‖S(w,A(w,A(w,y(w))))−F (w,y(w))‖2

+ ‖T (w,B(w,y(w)))−E(w,A(w,y(w)))‖2]. (19)

SinceAE = EA and SA = AS we haveE(w,A(w, y(w))) = A(w,E(w, y(w))) =
A(w, y(w)) and S(w,A(w,A(w, y(w)))) = A(w, S(w,A(w, y(w)))) = A(w, y(w)).
Applying this in (19) we obtain

‖A(w, y(w))− y(w)‖2 ≤ α(w) max{‖A(w, y(w))− y(w)‖2

, ‖A(w, y(w))− A(w, y(w))‖2, ‖y(w)− y(w)‖2

,
‖A(w, y(w))− y(w)‖2 + ‖y(w)− A(w, y(w))‖2

2
}

+ β(w) max{‖A(w, y(w))− A(w, y(w))‖2

, ‖y(w)− y(w)‖2}
+ γ(w)[‖A(w, y(w))− y(w)‖2 + ‖y(w)− A(w, y(w))‖2].
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It follows that

‖A(w, y(w))− y(w)‖2 ≤ (α(w) + 2γ(w))‖A(w, y(w))− y(w)‖2

⇒ A(w, y(w)) = y(w). (20)

Since S(w,A(w, y(w))) = y(w) and by (20) we have S(w, y(w)) = y(w), i.e.
S(w, y(w)) = A(w, y(w)) = y(w).
Again, since BF = FB and using (1) we have

‖y(w)−B(w,y(w))‖2 = ‖E(w,y(w))−B(w,F (w,y(w)))‖2=‖E(w,y(w))−F (w,B(w,y(w)))‖2

≤ α(w)max{‖S(w,A(w,y(w)))−T (w,B(w,B(w,y(w))))‖2

, ‖S(w,A(w,y(w)))−E(w,y(w))‖2,‖T (w,B(w,B(w,y(w))))−F (w,B(w,y(w)))‖2

, ‖S(w,A(w,y(w)))−F (w,B(w,y(w)))‖2+‖T (w,B(w,B(w,y(w))))−E(w,y(w))‖2
2

}

+ β(w)max{‖S(w,A(w,y(w)))−E(w,y(w))‖2

, ‖T (w,B(w,B(w,y(w))))−F (w,B(w,y(w)))‖2}

+ γ(w)[‖S(w,A(w,y(w)))−F (w,B(w,y(w)))‖2

+ ‖T (w,B(w,B(w,y(w))))−E(w,y(w))‖2]

. (21)

Since FB = BF and TB = BT we have F (w,B(w, y(w))) = B(w,F (w, y(w))) =
B(w, y(w)) and T (w,B(w,B(w, y(w)))) = B(w, T (w,B(w, y(w)))) = B(w, y(w)).
Applying this in (21) we get

‖y(w)−B(w, y(w))‖2 ≤ α(w) max{‖y(w)−B(w, y(w))‖2

, ‖y(w)− y(w)‖2, ‖B(w, y(w))−B(w, y(w))‖2

,
‖y(w)−B(w, y(w))‖2 + ‖B(w, y(w))− y(w)‖2

2
}

+ β(w) max{‖y(w)− y(w)‖2

, ‖B(w, y(w))−B(w, y(w))‖2}
+ γ(w)[‖y(w)−B(w, y(w))‖2 + ‖B(w, y(w))− y(w)‖2].

It follows that

‖y(w)−B(w, y(w))‖2 ≤ (α(w) + 2γ(w))‖B(w, y(w))− y(w)‖2

⇒ B(w, y(w)) = y(w). (22)

Since T (w,B(w, y(w))) = y(w) and by (22) we have T (w, y(w)) = y(w), i.e.
T (w, y(w)) = B(w, y(w)) = y(w).

Finally, for the uniqueness of the common random fixed point y(w) of
E,F, S, T, A and B , let p(w) : Ω→ C be another common random fixed point
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of E,F, S, T, A and B, using (1) we obtain

‖y(w)− p(w)‖2 = ‖E(w, y(w))− F (w, p(w))‖2

≤ α(w)max{‖S(w,A(w,y(w)))−T (w,B(w,p(w)))‖2

, ‖S(w,A(w,y(w)))−E(w,y(w))‖2,‖T (w,B(w,p(w)))−F (w,p(w))‖2

, ‖S(w,A(w,y(w)))−F (w,p(w))‖2+‖T (w,B(w,p(w)))−E(w,y(w))‖2
2

}

+ β(w)max{‖S(w,A(w,y(w)))−E(w,y(w))‖2,‖T (w,B(w,p(w)))−F (w,p(w))‖2}

+ γ(w)[‖S(w,A(w,y(w)))−F (w,p(w))‖2+‖T (w,B(w,p(w)))−E(w,y(w))‖2],

which yields

‖y(w)− p(w)‖2 ≤ α(w) max{‖y(w)− p(w)‖2, ‖y(w)− y(w)‖2

, ‖p(w)− p(w)‖2, ‖y(w)− p(w)‖2 + ‖p(w)− y(w)‖2

2
}

+ β(w) max{‖y(w)− y(w)‖2, ‖p(w)− p(w)‖2}
+ γ(w)[‖y(w)− p(w)‖2 + ‖p(w)− y(w)‖2].

This implies

‖y(w)− p(w)‖2 ≤ (α(w) + 2γ(w))‖y(w)− p(w)‖2

< ‖y(w)− p(w)‖2

⇒ y(w) = p(w) for w ∈ Ω.

The proof of the theorem is completed.
If we put A = B = I (where I is the identity mapping on H) in Theorem 3.1,
we obtain the following result:

Corollary 3.2 Let C be a nonempty closed subset of a separable Hilbert
space H. Let E,F, S and T : Ω × C → C be four random mappings satisfing
the following conditions:

E(w,H) ⊆ T (w,H), F (w,H) ⊆ S(w,H). (23)

The pairs (E, S) and (F, T ) are weakly compatible. (24)

‖E(w, x)− F (w, y)‖2 ≤ α(w)max{‖S(w,x)−T (w,y)‖2,‖S(w,x)−E(w,x)‖2

, ‖T (w,y)−F (w,y)‖2

, ‖S(w,x)−F (w,y)‖2+‖T (w,y)−E(w,x)‖2
2

}

+ β(w)max{‖S(w,x)−E(w,x)‖2,‖T (w,y)−F (w,y)‖2}

+ γ(w)[‖S(w,x)−F (w,y)‖2+‖T (w,y)−E(w,x)‖2], (25)
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for x, y ∈ H and w ∈ Ω, where α, β, γ : Ω → [0, 1) are measurable mappings
such that for all w ∈ Ω,

2α(w) + β(w) + 4γ(w) < 1.

Then E,F, S and T have a unique common random fixed point.

If S = T and E = F in corollary 3.2, we have the following result:

Corollary 3.3 Let C be a nonempty closed subset of a separable Hilbert
space H. Let E and S : Ω × C → C be two random mappings satisfing the
following conditions:

E(w,H) ⊆ S(w,H). (26)

The pair (E, S) is weakly compatible. (27)

‖E(w, x)− E(w, y)‖2 ≤ α(w)max{‖S(w,x)−S(w,y)‖2,‖S(w,x)−E(w,x)‖2

, ‖S(w,y)−E(w,y)‖2

, ‖S(w,x)−E(w,y)‖2+‖S(w,y)−E(w,x)‖2
2

}

+ β(w)max{‖S(w,x)−E(w,x)‖2,‖S(w,y)−E(w,y)‖2}

+ γ(w)[‖S(w,x)−E(w,y)‖2+‖S(w,y)−E(w,x)‖2], (28)

for x, y ∈ H and w ∈ Ω, where α, β, γ : Ω → [0, 1) are measurable mappings
such that for all w ∈ Ω,

2α(w) + β(w) + 4γ(w) < 1.

Then E and S have a unique common random fixed point.

4 Open Problems

(1) Is Theorem 3.1 true in a Polish metric space?
(2) Is Theorem 3.1 can be extended to more general contraction mappings?
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