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Abstract

abstract: Applying the recently developed theory of flag graphs and
k-orbit maps to polyhedra we classify the 75 uniform polyhedra by their
symmetry-type graphs. The presented general method and algorithm
for finding symmetry-type graphs paves the way for a similar classifica-
tion of non-uniform polyhedra.
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1 Introduction
The goal of this paper is: 1) to present a classification of the 75 uniform
polyhedra based on their symmetry-type graphs T (P) and TR(P) of two kinds:
the first ones defined by all the isometries of R3 preserving a given polyhedron
P, and the others only by rotations (thus we extend a similar classification
of Platonic and Archimedean solids [9]); 2) to present a general method and
algorithm for finding symmetry-type graphs of uniform polyhedra (allowing
generalizations to non-uniform polyhedra).

The main result (Theorem 1, Section 3) states two basic points:
i) There are 10 classes of uniform polyhedra (defined by the 16 different

symmetry-type graphs T (P) and TR(P) of uniform polyhedra);
ii) The symmetry-type graphs T (P) and TR(P) and hence the class C(P) of

an uniform polyhedron P depend only on its vertex pattern type (e.g. (p.q.q),
(p.q.p.q), (p.q.r.q.q.q) etc.; the notation by vertex pattern is explained in [7]).

The structure of the paper follows the usual pattern of research articles
(while its style of writing exemplifies the creative approach to problems, elab-
orated in [2]): First we present some basic concepts (Section 2) and formulate
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the main result (Theorem 1, Section 3); then we discuss the tools, method and
algorithm (Section 4), used in the proof of the main result (Section 5), and
finally (Section 6) we analyze the solution and list some related open problems.

2 Preliminaries
In this section we define or mention some basic terms, notation and facts re-
garding polyhedra and their symmetries and explain the concepts of flag graphs
and symmetry-type graphs ([14]), on which our classification of polyhedra is
built.

polyhedron: During the intense investigation of polyhedra extending
over a period of more than 4000 years (e.g. the Moscow Papyrus dated c.
1890 b.c. suggests Egyptians knew how to compute the volume of a trun-
cated square pyramid [19], p.81) accumulated very different, mutually exclu-
sive definitions of the term polyhedron; they were viewed as solids, surfaces
or frameworks – depending on the period in which geometers lived and the
problems they studied ([4], p.12.). An introduction to polyhedron theory may
be found for instance in [19], pp.191-197. For us a polyhedron P will be a solid
in Euclidean space R3 with the given sets of vertices V (P), edges E(P) and
(polygonal or star) faces F (P). Two faces f, g ∈ F (P) are of the same type,
if they are congruent. The type of a regular polygonal face is denoted simply
by the number of its edges (3, 4, 5, 6, 8, 10, 12, etc.), the type of a star face is
expressed with two numbers (5/2, 10/3, etc.).

uniform polyhedron: A polyhedron P is called vertex-transitive if for
any u, v ∈ V (P) there is a symmetry h ∈ I(P) such that h(u) = v. A
polyhedron P is called uniform if it is vertex-transitive and if all its faces are
regular polygons or regular stars. Uniform polyhedra can be described by their
vertex pattern – the cycle of faces around any of their vertices. Some of them,
like a snub cube (3.3.3.3.4) have two different forms, being mirror images of
each other. A regular-faced polyhedron with only one type of vertex is not
necessarily uniform: J.C.P.Miller discovered a non-uniform polyhedron with
one vertex type, the same as that of a rhombicuboctahedron (3.4.4.4) ([1],
p.137, [7], p.172).

Uniform polyhedra with just one type of face are called regular polyhedra.
There are five convex regular polyhedra, called the Platonic solids, and there
are four non-convex regular polyhedra, called the Kepler-Poinsot polyhedra.

the symmetry group I(P): The group of isometries I(R3) of Euclidean
space R3 consists of translations, reflections (over a plane, over a point or
central reflection, and glide-reflections) and rotations. The symmetry group
I(P) of polyhedron P , defined as the group of isometries h ∈ I(R3) preserving
P, consists of the sets of rotations Rot(P) and reflections (over a plane or a
point) Ref(P). The elements of I(P) are called symmetries of P .
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the flag graph GP and the monodromy group Mon(P) : If all the
faces f ∈ P are regular polygons or regular stars, we can make a baricentric
subdivision of its faces into triangles, called flags. The vertices of any such flag
Φ, denoted by Φ2 (the center of the face f incident with Φ), Φ1 (the center of
the edge e incident with Φ) and Φ0 (the vertex of the edge e incident with Φ),
are called the face, the edge and the vertex of Φ, respectively.

Each flag Φ has three adjacent flags, sharing an edge with Φ: the 0-adjacent
flag Φ0 lies in the same face f as Φ and along the same edge of f ; the 1-adjacent
flag Φ1 lies in the same face f as Φ, but not along the same edge of f ; the
2-adjacent flag Φ2 lies along the same edge of f , but not in the same face as
Φ [14], see Figure 1.

Figure 1: Left – flags in a pentagonal star, right – adjacent flags of X.

The flag graph GP of a polyhedron P is a graph whose vertex set con-
sists of all the triangles (flags) obtained from the baricentric subdivision of its
faces. The edges connecting pairs of adjacent flags (Φ,Φ0), (Φ,Φ1), (Φ,Φ2)
are labeled 0, 1 and 2, respectively. Involutions s0, s1 and s2 of the flag graph,
carrying flags Φ ∈ GP into their adjacent flags: s0(Φ) = Φ0, s1(Φ) = Φ1,
s2(Φ) = Φ2, satisfy the relations (s0s2)2 = id = s20 = s21 = s22. The group
Mon(P), generated by s0, s1, s2 is called the monodromy group of P .

the group Aut(GP): Let Aut(GP) denote the group of automorphisms of
the flag graph GP , preserving not only adjacency of vertices of GP but also the
labels 0, 1, 2 of edges. Given any two flags Φ and Ψ of GP , there is at most one
automorphism h̃ ∈ Aut(GP) carrying a flag Φ into a flag Ψ [14]. Consequently,
any symmetry h ∈ I(P) can be described by an ordered pair (Φ, h̃(Φ)). I(P) is
isomorphic to a subgroup Ĩ(P) ofMon(P), since to different isometries h1, h2 ∈
I(P) correspond different automorphisms h̃1, h̃2 ∈ Aut(GP). Thus h̃ can be
denoted by an orderer pair (Φ,Ψ). Clearly Mon(P) is a subgroup of Aut(GP)
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and Ĩ(P) is a subgroup ofMon(P). Thus I(P) ∼= Ĩ(P)▹Mon(P)▹Aut(GP).
Hence any symmetry h ∈ I(P) can be described by an ordered pair (Φ, h̃(Φ)),
where h̃ ∈Mon(P), or better, denoted by h(Φ, h̃(Φ)).

orbit of a flag: The orbit T (Φ) of a flag Φ ∈ V (GP) is a set of all
flags into which Φ is carried by all the isometries h ∈ I(P) preserving the
polyhedron: T (Φ) = {h̃(Φ), h ∈ I(P)}. Each member of the orbit T (Φ) is
called a representative of that orbit. Any symmetry of a given polyhedron P
can be simply described by telling which s ∈Mon(P) preserves the orbit of a
chosen flag Φ of a given face f .

the symmetry-type graphs T (P) and TR(P): The quotient graph of
GP under the action of Ĩ(P) (whose vertices are orbits of flags of GP and whose
edges labeled 0, 1 and 2 correspond to labeled edges of their representatives)
is called the symmetry-type graph of the polyhedron P and is denoted by
T (P). From this definition immediately follows: T (si(Φ)) = si(T (Φ)) for all
three involutions s0, s1, s2 of the flag graph. Hence T (s(Φ) = s(T (Φ)) for any
s ∈ Mon(P) and any Φ ∈ GP . For the classification of polyhedra we will
use also another type of quotient graph of GP , denoted by TR(P). Here the
orbit TR(Φ) of Φ consists only of those flags Ψ, for which there is a rotation
h ∈ Rot(P), carrying Φ into Ψ. If two flags Φ and Ψ lie in the same orbit, we
write Φ ≈ Ψ instead of T (Φ) = T (Ψ) or Φ ∼ Ψ instead of TR(Φ) = TR(Ψ).

pre-graph, half-edge: Flag-graphs are 3-regular, while in the symmetry-
type graphs there may be loops (edges connecting an orbit with itself. Intro-
ducing the concept of pre-graphs and using half-edges instead of loops [15] we
can represent them as 3-regular pregraphs without loops. Half-edges may be
also of three types: 0, 1 and 2. When we represent flag graphs and symmetry-
type graphs with drawings, we usually label the edges with numbers 0, 1, 2
or color them blue, yellow and red. We can also mark the 1-edges with the
symbol (|) and the 2-edges with two parallel lines (∥).
TR-orbits and T -orbits: Since we are interested in two different kinds

of symmetry-type graphs: T (P) and TR(P), we will distinguish between the
TR-orbits (defined only by rotations preserving the polyhedron) and the T -
orbits (defined also by reflections preserving the polyhedron). We will see that
sometimes it is easier to find TR-orbits and from them deduce what are T -
orbits, and sometimes it is just the opposite: we first determine the T -orbits,
and from them deduce what must be the TR-orbits. We may be interested not
only in orbits of flags, but also in orbits of vertices, edges and faces, too.
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3 Main results
In this section we present a classification of uniform polyhedra by their symmetry-
type graphs T (P) and TR(P).

Two polyhedra P and Q are in the same equivalence class if they have the
same symmetry-type graphs: T (P) = T (Q) and TR(P) = TR(Q) .

We will see that there are 10 equivalence classes of uniform polyhedra and
that the equivalence class of any uniform polyhedron P depends only on its
vertex pattern type (Theorem 1).

Figure 2 shows representations of all the 16 symmetry-type graphs of the
75 uniform polyhedra. Some of these graphs are well known [12].

Our notation for them was chosen so that:
i) it indicates the number of their vertices,
ii) it distinguishes between non-isomorphic graphs with the same number

of vertices and different 0-edges,
iii) it emphasizes the fact that the graph 6+6 has two 1-2 cycles;
iv) it tries to capture the similarity between symmetry-type graphs of dif-

ferent classes (compare graphs with letters a), b) or c) following the numbers).

Figure 2: Symmetry-type graphs T (P) and TR(P) of uniform polyhedra.

The classification of uniform polyhedra by their symmetry-type graphs
T (P) and TR(P) is presented in the following theorem (Theorem 1), whose
proof is given in Section 5.
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Theorem 1 There are 16 different symmetry-type graphs T (P) and TR(P) of
the 75 uniform polyhedra and they have have 1, 2, 3, 4, 6, 8, 10, 12 or 16
vertices (representing orbits of flags in the original flag graph GP).

These symmetry-type graphs can be described by the permutations of orbits
a, b, c, ..., induced by the involutions s0, s1, s2, as follows (see Table 1).

graph s0 s1 s2

1 id id id
2a (ab) (ab) (ab)
2 id id (ab)
3 id (a)(bc) (ab)(c)
4 id (a)(bc)(d) (ab)(cd)
4a (ad)(bc) (ad)(bc) (ab)(cd)
4b id (ab)(cd) (ad)(bc)
6a (af)(be)(cd) (af)(bc)(de) (ab)(cd)(ef)
6b id (ab)(cd)(ef) (af)(bc)(de)
6c (a)(b)(cf)(de) (a)(bc)(de)(f) (ab)(cd)(ef)
8a (ah)(bg)(cf)(de) (ab)(cd)(ef)(gh) (ah)(bc)(de)(fg)
8d (ae)(bf)(cg)(dh) (ab)(cd)(ef)(gh) (ah)(bc)(de)(fg)
10a (ab)(cj)(dg)(ef)(ih) (ab)(cd)(ef)(gh)(ij) (aj)(bc)(de)(fg)(hi)
12a (al)(bk)(cf)(de)(gj)(hi) (al)(bc)(de)(fg)(hi)(jk) (ab)(cd)(ef)(gh)(ij)(kl)
6+6 (aA)(bB)(cC) (ab)(cd)(ef) (af)(bc)(de)

(dD)(eE)(fF) (AB)(CD)(EF) (AF)(BC)(DE)
16a (ap)(bo)(cf)(de) (ap)(bc)(de)(fg) (ab)(cd)(ef)(gh)

(gj)(hi)(kn)(lm) (hi)(jk)(lm)(no) (ij)(kl)(mn)(op)

Table 1: Symmetry-type graphs of uniform solids described by permutations of
orbits, induced by the involutions s0, s1, s2.

The symmetry-type graphs T (P) and TR(P) of uniform polyhedron P depend
only on its vertex pattern type and define the following 10 classes of uniform
polyhedra (see Table 2).
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class of P T (P) TR(P)

vertex type of P

I.Regular 1 2a

(p.p.p), (p.p.p.p), (p.p.p.p.p) (p.p.p.p.p)/2

II.Quasi-regular 2 4a

(p.q.p.q), (p.q.p∗.q), (p.q.p.q.p.q)

III. Truncated regular 3 6a

(p.q.q)

IV.Versi-quasi regular 4 8

(p.q.r.q),(p.q.q.q)

V. Semi-quasi regular 4b 8

(p.q.p∗.q∗)

VI.Truncated quasi-regular 6b 6 + 6

(p.q.r)

VII.U75 Great Dirhombicosidodecahedron 8a 16a

(p.q.r.q.p∗.q.r∗.q)

VIII.Snub quasi-regular with n = 5 faces 10a 10a

(p.q.q.q.q),(p.q.q.q.q)/2, (p.q.r.q.q)

IX. Snub quasi-regular with n = 6 faces 6c 12a

and reflection symmetry

(p.q.q.q.q.q),(p.q.q.q.q.q)/2

X. Snub quasi-regular with n = 6 faces 12a 12a

without reflection symmetries

(p.q.r.q.q.q), (p.q.p∗.q.q.q)

Table 2: The 10 classes of uniform polyhedra.

Faces denoted by p∗, q∗ are of the same type as faces p, q, respectively, but
with the opposite orientation. The names of some of these classes are the same
as in Johnson’s classification of uniform polyhedra by their vertex figure ([8]).
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4 Some tools, a method and an algorithm
In this section we present some tools, a method and an algorithm for finding
symmetry-type graphs of uniform polyhedra.

4.1 Some tools for finding symmetry-type graphs

cycles of flags or orbits of flags: Let G ∈ {GP , T (P), TR(P)} be
any flag graph or symmetry-type graph of a polyhedron P .

A 1-2 cycle C12(X1, X2 . . . X2m) is a cyclical sequence of vertices Xi ∈
V (G), such that s1(X2i−1) = X2i and s2(X2i) = X2i+1(mod 2m) for any i ∈
{1, 2, . . . ,m}.

A 2-0 cycle C12(X1, X2 . . . X2m) is a cyclical sequence of vertices Xi ∈
V (G), such that s2(X2i−1) = X2i and s0(X2i) = X2i+1(mod 2m) for any i ∈
{1, 2, . . . ,m}.

A 0-1 cycle C01(X1, X2 . . . X2m) is a cyclical sequence of vertices Xi ∈
V (G), such that s0(X2i−1) = X2i and s1(X2i) = X2i+1(mod 2m) for any i ∈
{1, 2, . . . , 2m}.

Such cycles correspond to vertices, edges and faces of a given polyhedron
P. All the 0-2 cycles (corresponding to an edge e ∈ E(P)) have length 4 in
the flag graph GP and length 1, 2 or 4 in the symmetry-type graphs T (P) and
TR(P).

Similar cyclical sequences were used for the classification of homogeneous
planar nets [3] and in the study of local flag arrangements of tilings [14].

reflection symmetries as transformations of flags: For any flag
Φ and for any i ∈ {0, 1} let SΦi : R3 → R3 be the reflection of Euclidean space
over a plane orthogonal to the face passing through the common edge of Φ and
Φi. If SΦi preserves P , we can write: SΦi ∈ I(P).

Proposition 1 Let P be a uniform polyhedron with n faces around each ver-
tex. If SΦ1 ∈ I(P), then P remains vertex-transitive even if we forbid reflec-
tions, hence TR(P) has at most 2n vertices.

Proof. Since P is vertex-transitive there are symmetries h1, h2 ∈ I(P) carrying
the flag Φ into a pair of 1-adjacent flags incident with any chosen vertex v ∈
V (P). One of the symmetries h1, h2 is a reflection, the other is a rotation. �

Proposition 2 Let P be a polyhedron. If there is a reflection symmetry
SΦi ∈ I(P), it implies T (Φ) = T (si(Φ)). In that case there are half-edges
(representing loops) labeled i in the symmetry-type graph T (G).
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Proof. If SΦi(P) = P then SΦi induces an automorphism of GP , and flags Φ
and si(Φ) = Si(Φ) belong to the same orbit. �

unique face: A face x is called unique around a given vertex u, if it is the
only face of its type incident with u. For example, in a polyhedron (3.4.5.4)
the faces 3 and 5 are unique (around each vertex), while the two identical
faces 4 are not. Likewise in a polyhedron (10.10.5/2) a pentagram star 5/2 is
a unique face, while the two regular 10-gons are not.

Proposition 3 If a uniform polyhedron P has a unique face x, then T (P) has
either n or 2n vertices (representing orbits of flags).

Proof. Uniform polyhedra are vertex-transitive. If x is a unique face of a
uniform polyhedron P then the pairs of flags incident to any of the vertices of
x belong to at most two orbits. Since all the orbits contain the same number
of flags, there must be at least n orbits of flags in T (P). And since the number
of T -orbits #o divides 2n, it is either #o = n (if there is a reflection symmetry
SX1(P) = P) or #o = 2n (if there is no such symmetry). �

odd face: A face f ∈ P with an odd number of edges is called an odd
face.

Proposition 4 If a uniform polyhedron P contains an odd unique face x,
then along each edge of x there must be flags X and X1, hence X0 = X1 and
(T (X))0 = T (X1). In that case we can find another 0-edge between orbits:
T (X2)0 = T (X0)2, since the 0-2 cycles of flags have length 4.

Proof. An odd unique face contains only two types of flags: X and X1, which
must alternate along the edges. �

position vector: Let f(X) denote the type 3, 4, 5 or 6 of the face x
containing the flag X. The position vector v(X) of a flag X is defined as
v(X) = (f(X), f(s2(X)).

Proposition 5 If two flags have different position vectors, then they can not
lie in the same orbit, and they can not even lie in the 0-adjacent orbits.

Proof. Any two flags X and Y belonging to the same orbit have the same
position vectors: if T (X) = T (Y ), then v(X) = v(Y ). Any two flags X and
Y belonging to a pair of 0-adjacent orbits have the same position vectors: if
T (X) = s0(T (Y )), then v(X) = v(Y ). �
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4.2 A method for finding symmetry-type graphs

Some uniform polyhedra (especially the non-convex ones) are very complex
objects and it would be very hard to find their symmetry-type graphs as quo-
tients of flag-graphs, since the flag graphs are almost impossible to draw; so
a natural question is: Can we find symmetry-type graphs of uniform polyhedra
by an algebraic method?

An ideal (algebraical) method would simply calculate symmetry-type graphs
T (P) and TR(P) from some algebraic information uniquely determining P (for
example from its vertex pattern type). Until one finds such a method, we can
still get the same results also by more practical (partly empirical) method,
combining logical reasoning, observation, combinatorics and looking for addi-
tional common characteristics of all members of a given class of polyhedra:

use logical reasoning to avoid drawing large flag-graphs:
Since every uniform polyhedron P is vertex-transitive, there is a symmetry
h ∈ S(P) carrying the 1-2 cycle of flags around any u ∈ V (P) into the 1-2
cycle of flags around any other vertex v ∈ V (P), hence there are at most
2n vertices in T (P) and they form a 1-2 cycle. To find T (P) it is obviously
enough to discover which of these vertices lie in the same orbit and how they
are connected with 0-edges.

observe the symmetries and identify orbits: Looking at polyhe-
dron nets, pictures or 3D-models find for each uniform polyhedron P separately
its rotation and reflection symmetries, especially those with symmetry axes or
symmetry planes going through a chosen vertex of P. Thus you can find the
exact number of vertices in T (P). You also know whether the part of T (P)
without 0-edges is a cycle or a path.

use combinatorial tricks: To find the 0-edges in T (P) you may use
some simple combinatorial tricks: i) draw all possible combinations of 0-edges
(there are really only a very few possibilities) and eliminate the impossible
cases; ii) use the formula s0s2s0s2 = id (as explained in Proposition 4); iii) use
the fact that some faces are unique (hence they can have only two types of
flags), iv) count the flags in different faces (for example flags from a face with
5 edges can lie only in 1, 2 or 10 orbits, flags from a triangular faces can lie
only in 1, 2, 3 or 6 orbits).

look for additional common characteristics of all members
of the same class: Once we forget the »ideal goal« of calculating symmetry-
type graphs directly from the vertex pattern type, we can make small but
useful discoveries in another direction: for example we may find out that all
uniform polyhedra with n = 6 faces around each vertex have only odd faces
and then we can try to use that information for constructing some detail of
their symmetry-type graphs.
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4.3 An algorithm for finding symmetry-type graphs
To find symmetry-type graphs T (P) and TR(P) of an uniform polyhedron P
it suffices to execute the following general procedure:

Algorithm 1 (symmetry-type graphs of uniform solids)
(1) Label the 1-2 cycle of flags around a chosen vertex with numbers 1, 2, . . . , 2n.
(2) Identify flags of this cycle belonging to the same orbit.
(3) Find the 0-edges between orbits.

This algorithm suggests only what to do, not specifying how to do it. One
possible way is the following:

(1) draw a basic 1-2 cycle: Draw a regular 2n-gon, label its vertices
with numbers 1, 2, . . . , 2n and for each i ∈ {1, . . . , n} label the edges (2i−1, 2i)
with 1 and edges (2i, 2i+ 1(mod 2n)) with 2.

(2) identify orbits: Find out if there are any rotation symmetries with
axis going through a vertex or reflection symmetries with a reflection plane
going through a vertex.

(3) find 0-edges: Find out the 0-edges using the following techniques
and concepts: an odd unique face, counting the flags in various faces etc.

4.4 Some observations about symmetries of polyhedra
Let us mention here a brief summary some discoveries about symmetries of the
75 uniform polyhedra (obtained by observation of their pictures, 3D-models or
polyhedron nets); as shown in Section 5, they allow an easy determination of
symmetry-type graphs of whole classes of polyhedra at once.

Many uniform polyhedra have a reflection symmetry SP1 , identifying flags
P and P 1 in the face p. This is the case with the classes I, II, III, IV, IX.

If a polyhedron has reflection symmetries SX0 in all its faces x then all the
0-edges in the symmetry-type graph T (P) are half-edges. This is the case with
the classes I, II, III, IV, V and VI.

The polyhedra from the classes V and VII have a reflection symmetry
identifying pairs of opposite flags i and i+ n in the basic 1-2 cycle.

The polyhedra from the classes VIII and X have no reflection symmetries.

5 The proof of Theorem 1
In this section we determine symmetry-type graphs of uniform polyhedra. For
each polyhedron we give its uniform notation number Uxy and Wenninger
([21]) notation number Wxy. We will consider the following ten classes of
polyhedra:
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Class I (regular polyhedra) consists of N = 9 polyhedra with vertex
pattern (p.p.p), (p.p.p.p), (p.p.p.p.p) and (p.p.p.p.p)/2:
the five Platonic solids (subclass I.a)

U01 W01 Tetrahedron (3.3.3)
U05 W02 Octahedron (3.3.3.3)
U06 W06 Cube (4.4.4)
U22 W04 Icosahedron (3.3.3.3.3)
U23 W05 Dodecahedron (5.5.5)

and the four Kepler-Poinsot polyhedra (subclass I.b)
U34 W20 Small Stellated Dodecahedron (5/2.5/2.5/2.5/2.5/2)
U35 W21 Great Dodecahedron (5.5.5.5.5)/2
U52 W22 Great Stellated Dodecahedron (5/2.5/2.5/2)
U53 W41 Great Icosahedron (3.3.3.3.3)/2.
Each of these polyhedra P has reflection symmetries carrying any chosen

flag Φ into its adjacent flags Φ0,Φ1,Φ2, consequently there is only one orbit of
flags in T (P). By Proposition 1 P remains vertex-transitive even if we forbid
reflections. Rotations Rp,2π/p around the center of each face p for the angle
2π/p ensure that there are only two orbits of flags in TR(P). All the flags at
odd distances from any chosen initial flag Φ (if we define distance between two
flags as the smallest number of involutions needed to come from one to the
other) lie in the same orbit a and all flags at even distances from Φ lie in the
same orbit b of TR(P). Since the flags at odd distances from Φ are adjacent
only to flags at even distances from Φ, the orbits a and b are connected with
edges labeled 0, 1 and 2.

Class II (quasi-regular polyhedra) consists of N = 16 polyhedra with
vertex pattern (p.q.p.q) (p.q.p∗.q), (p.q.p.q.p.q) or (p.q.p.q.p.q)/2. The thirteen
solids with n = 4 faces around each vertex are (subclass II.a):

U07 W11 Cuboctahedron (3.4.3.4)
U24 W12 Icosidodecahedron (3.5.3.5)
U36 W73 Dodecadodecahedron (5/2.5.5/2.5)
U54 W94 Great Icosidodecahedron (5/2.3.5/2.3)
U03 W68 Octahemioctahedron (3.6.3/2.6)
U04 W67 Tetrahemihexahedron (3.4.3/2.4)
U15 W78 Cubohemioctahedron (4.6.4/3.6)
U49 W89 Small Icosihemidodecahedron (3.10.3/2.10)
U51 W91 Small Dodecahemidodecahedron (5.10.5/4.10)
U62 W100 Small Dodecahemicosahedron (5/2.6.5/3.6)
U65 W102 Great Dodecahemicosahedron (5.6.5/4.6)
U70 W107 Great Dodecahemidodecahedron (5/2.10/3.5/3.10/3)
U71 W106 Great Icosihemidodecahedron (3.10/3.3/2.10/3)
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The three solids with n = 6 faces around each vertex are (subclass II.b):
U30 W70 Small Ditrigonal Icosidodecahedron (5/2.3.5/2.3.5/2.3)
U41 W80 Ditrigonal Dodecadodecahedron (5/3.5.5/3.5.5/3.5)
U47 W87 Great Ditrigonal Icosidodecahedron (5.3.5.3.5.3)/2.
All these polyhedra have reflection symmetries SP1 and SQ1 and rotation

symmetry Rv,2π/n. Hence there are only two orbits of flags, say a (belonging
to flags from the faces p) and b (belonging to flags from the faces q). Thus
a0 = a, b0 = b, a1 = a, a2 = b, b1 = b, and T (P) is known.

Now let us find TR(P)! By Proposition 1 all these polyhedra remain vertex-
transitive also if we forbid reflections. The rotation symmetry Rv,2π/n implies
the 1-2 part of TR(P) is a 1-2 cycle consisting of four orbits. Two of them, say
a and b, belong to the flags from p and two of them, say c and d, belong to the
flags from q, hence: a1 = b, b2 = c, c1 = d. Consequently a0 = b, c0 = d, since
there are no half-edges in TR(P) and since any two 0-adjacent flags lie in the
same face.

Class III (truncated regular polyhedra) consists of N = 10 polyhedra
with the vertex pattern (p.q.q):

U02 W6 Truncated Tetrahedron (3.6.6)
U08 W7 Truncated Octahedron (4.6.6)
U09 W8 Truncated Cube (3.8.8)
U25 W9 Truncated Icosahedron (5.6.6)
U26 W10 Truncated Dodecahedron (3.10.10)
U19 W92 Stellated Truncated Hexahedron (3.8/3.8/3)
U37 W75 Great Truncated Dodecahedron (5/2.10.10)
U55 W95 Great Truncated Icosahedron (5/2.6.6)
U58 W97 Small Stellated Truncated Dodecahedron (5.10/3.10/3)
U66 W104 Great Stellated Truncated Dodecahedron (3.10/3.10/3).
These polyhedra have reflection symmetries SP1 implying 11 ≈ 2, 31 ≈

6, 51 ≈ 6. Thus there are three orbits of flags, say a = T (1) = T (2), b =
T (3) = T (6), c = T (4) = T (5). Obviously a0 = a, hence b0 = b and c0 = c and
T (P) is known.

Let us now determine TR(P)! By Proposition 1 these polyhedra remain
vertex-transitive even if we forbid reflections. Hence there are six orbits, say
a = TR(1), b = TR(2), c = TR(3), d = TR(4), e = TR(1), f = TR(6). Conse-
quently a0 = b and therefore c0 = f , d0 = e, since there are no half-edges in
TR(P) and since any two 0-adjacent flags lie in the same face.

Class IV (versi quasi-regular polyhedra) consists of N = 14 polyhe-
dra; twelwe of them (subclass IV.a) have vertex pattern (p.q.r.q):

U13 W69 Small Cubicuboctahedron (3/2.8.4.8)
U14 W77 Great Cubicuboctahedron (3.8/3.4.8/3)
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U27 W14 Rhombicosidodecahedron (3.4.5.4)
U31 W71 Small Icosicosidodecahedron (5/2.6.3.6)
U33 W72 Small Dodecicosidodecahedron (5.10.3/2.10)
U38 W76 Rhombidodecadodecahedron (5/2.4.5.4)
U42 W81 Great Ditrigonal Dodecicosidodecahedron (5.10/3.3.10/3)
U43 W82 Small Ditrigonal Dodecicosidodecahedron (5/3.10.3.10)
U44 W83 Icosidodecadodecahedron (5.6.5/3.6)
U48 W88 Great Icosicosidodecahedron (5.6.3/2.6)
U61 W99 Great Dodecicosidodecahedron (3.10/3.5/2.10/3)
U67 W105 Great Rhombicosidodecahedron (3.4.5/3.4)

and two of them (subclass IV.b) have vertex pattern (p.q.q.q):
U10 W13 Rhombicuboctahedron (3.4.4.4)
U17 W85 Great Rhombicuboctahedron (3/2.4.4.4).
Let us first find TR(P) of these polyhedra. They all have reflection symme-

try SP1 . By Proposition 1 they remain vertex-transitive even if we forbid reflec-
tions. So the 1-2 part TR(P) is a 1-2 cycle with eight vertices 1, 2, 3, 4, 5, 6, 7, 8.
All these 14 polyhedra have an odd unique face p, hence 10 ≈ 2 and conse-
quently 30 = 3202 ≈ 8. All the 12 polyhedra from the subclass IV.a have also
another unique (not necessarily odd) face r, consequently its flags 5 and 6 are
0-adjacent: 50 ≈ 6, hence 40 = 4202 ≈ 7. The two polyhedra (3.4.4.4) and
(3/2.4.4.4) from the subclass IV.b have the same TR(P), since the other two
remaining cases 50 ≈ 7, 40 ≈ 8 and 50 ≈ 4, 70 ≈ 8 lead into contradiction, since
they would imply a 0-1 cycle of period 6 in each of the squares having only 8
flags.

From TR(P) we can find T (P), since the reflection symmetry SP1 im-
plies there are four orbits of flags: a = T (1) = T (2), b = T (3) = T (8),
c = T (4) = T (7), d = T (5) = T (6) and all the 0-edges are half edges.

Class V (semi quasi-regular polyhedra)
consists of N = 7 polyhedra with vertex pattern (p.q.p∗.q∗):
U18 W86 Small Rhombihexahedron (4.8.4/3.8/7)
U21 W103 Great Rhombihexahedron (4.8/3.4/3.8/5)
U39 W74 Small Rhombidodecahedron (10.4.10/9.4/3)
U50 W90 Small Dodecicosahedron (10.6.10/9.6/5)
U56 W96 Rhombicosahedron (6.4.6/5.4/3)
U63 W101 Great Dodecicosahedron (10/3.6.10/7.6/5)
U73 W109 Great Rhombidodecahedron (10/3.4.10/7.4/3)
Since there are four faces, we have a basic 1-2 cycle of flags 1, 2, 3, 4, 5, 6, 7, 8

around any chosen vertex u. All these polyhedra have a reflection symmetry C
over a plane going through the vertex u and the center of polyhedron carrying
p into p∗ and q into q∗. Therefore the pair of flags {1, 2} from p is carried into
the pair of flags {5, 6} from p∗, and the pair of flags {3, 4} from q is carried
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into pair of flags {7, 8} from q∗. Thus T (P) has four orbits, say a = T (1),
= T (2), c = T (3), d = T (4), and a1 = b, b2 = c, c1 = d. They all have also
reflection symmetries SX0 implying T (X) = T (X0) for any flag X. Thus the
central symmetry C must identify exactly the opposite flags i and i+4 (mod 8).
Therefore 1 ≈ 5, 2 ≈ 6, 3 ≈ 7, 4 ≈ 8. Hence 12 = 8 ≈ 4 and the T (P) is
known.

The reflection symmetry C implies that P remains vertex-transitive even
if we forbid reflections. For since all these polyhedra are uniform, there is a
symmetry h ∈ I(P) carrying vertex u into any other vertex v of P , and h
is either a reflection or rotation of Euclidean space R3. If h is a reflection
symmetry, then the composition of h and C is a rotation of R3 preserving P
and carrying u into v.

The 1-2 part of TR(P) is a 1-2 cycle: (2i−1)1 ≈ 2i, (2i)2 ≈ (2i+1)(mod 8)
for all i ∈ {1, 2, 3, 4}. The 0-edges in TR(P) connect exactly the identified pairs
of orbits: (TR(1))0 = TR(5), (TR(2))0 = TR(6),(TR(3))0 = TR(7),(TR(4))0 =
TR(8).

Class VI (truncated quasi-regular polyhedra) consists of N = 7
polyhedra with the vertex pattern (p.q.r):

U11 W15 Truncated Cuboctahedron (4.6.8)
U16 W79 Cubitruncated Cuboctahedron (8/3.6.8)
U20 W93 Great Truncated Cuboctahedron (8/3.6.4)
U28 W16 Truncated Icosidodecahedron (4.6.10)
U45 W84 Icositruncated Dodecadodecahedron (10/3.6.10)
U59 W98 Truncated Dodecadodecahedron (10/3.4.10)
U68 W108 Great Truncated Icosidodecahedron (10/3.4.6)
Choose any vertex of the polyhedron. Since there are n = 3 faces around

each vertex, there is a basic 1-2 cycle of flags 1, 2, 3, 4, 5, 6 around it.
Since there are three unique faces around each vertex, there are six different

position vectors: v(1) = (p, r), v(2) = (p, q), v(3) = (q, p), v(4) = (q, r),
v(5) = (r, q), v(6) = (r, p), thus there are 6 orbits of flags, so there are 6
vertices in T (P). The 1-2 part of T (P) is a 1-2 cycle, since 11 ≈ 2, 22 ≈ 3, 31 ≈
4, 42 ≈ 5, 51 ≈ 6, 62 ≈ 1. Since the 0-adjacent flags have the same position
vector, and since the flags 1, 2, 3, 4, 5, 6 have different position vectors, this
implies X0 ≈ X for each flag X and we have half-edges of type 0 in each of
the six vertices of T (P).

If we forbid reflections, these polyhedra are no more vertex-transitive?
There are two kind of vertices, say black and white, with 1-2 cycles of flags
1, 2, 3, 4, 5, 6 and 7, 8, 9, 10, 11, 12 around them. The orientations of these cy-
cles in adjacent vertices are opposite. Since 0-adjacent flags must have the
same position vectors, we see that X0 = X + 6 (mod 12).
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Class VII (U75) consists of just one uniform polyhedron with the vertex
pattern (p.q.r.q.p∗.q.r∗.q):

U75 W119 Great Dirhombicosidodecahedron (5/2.4.3.4.5/3.4.3/2.4)/2).
It has n = 8 faces around each vertex. Hence around each vertex there is a

1-2 cycle consisting of 2n = 16 flags 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.
There is a reflection symmetry of the polyhedron carrying 5/2 into 5/3,

identifying flags i and i+ 8(mod 16). Thus there are 8 orbits of flags.
In all the pentagram stars there are just 2 flags which are different and

alternate. The same is true in all triangular faces. Hence flags 1 and 2 alternate
in pentagram faces and flags 5 and 6 alternate in the triangle faces. Hence
10 ≈ 2, 50 ≈ 6 and hence 30 ≈ 8, 40 ≈ 7. Thus the symmetry-type graph
T (P) is known. The involutions s0, s1 and s2 act on the orbits a, b, c, d,
e, f , g, h, i, j like this: s0 = (ab)(ch) (dg)(ef), s1 = (ab)(cd)(ef)(gh), s2 =
(ah)(bc)(de)(fg). The numbers of orbits of vertices, edges and faces of flags
are: vo = 1, eo = 2, fo = 3.

Now let us find the symmetry-type graph TR(P). If we forbid reflections, is
the polyhedron still vertex-transitive? Yes, since we have rotation symmetries
in each pentagon. Yet now we have 16 orbits of flags, forming a 1-2 cycle.
What are the 0-edges? This is easy! 10 ≈ 2, hence 30 ≈ 16. Likewise: 50 ≈ 6
implies 40 ≈ 7; 90 ≈ 10 implies 80 ≈ 11 and 130 ≈ 14, hence 120 ≈ 15.

Class VIII (Snub quasi-regular polyhedra with n = 5 faces) consists
of N = 7 polyhedra;
five of them (subclass VIII.a) have the vertex pattern (p.q.q.q.q) or (p.q.q.q.q)/2:

U12 W17 Snub Cube (4.3.3.3.3)
U29 W18 Snub Dodecahedron (5.3.3.3.3)
U57 W113 Great Snub Icosidodecahedron (5/2.3.3.3.3)
U69 W116 Great Inverted Snub Icosidodecahedron (5/3.3.3.3.3)
U74 W117 Great Inverted Retrosnub Icosidodecahedron (5/2.3.3.3.3)/2

and two of them (subclass IV.b) have the vertex pattern (p.q.r.q.q):
U40 W111 Snub Dodecadodecahedron (5/2.3.5.3.3)
U60 W114 Inverted Snub Dodecadodecahedron (5.3.5/3.3.3)
These polyhedra have no reflection symmetries, therefore for them TR(P) =

T (P). Since they all have at least one unique face p and rotation symmetry
around its center for the angle 2π/p they must have the same orientation of 1-2
cycles of flags 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 around each vertex, and we can determine
0-edges in their symmetry-type graphs by labeling the 1-2 cycles of ten flags
around each vertex in the polyhedron net, starting at the unique face. Each of
these two polyhedra has two enantiomorphic forms, which are mirror images
of each other, and the same holds for their nets. But their symmetry-type
graphs are isomorphic.

We can find TR(P) = T (P) also more easily like this: the only two flags 1
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and 2 in the unique face p must be 0-adjacent to each other (since TR(P) has
no half-edges): 10 ≈ 2, hence 30 = 3202 ≈ 10. Since all non-unique faces of
these 7 polyhedra have 3 or 5 vertices, the 0-1 cycle passing through vertices
representing orbits of flags 4, 3, 10 and 9 contains exactly 6 vertices. Since all
the 0-2 cycles must have length dividing 4, we can easily see (by eliminating
a few impossible cases) that this can happen only in two cases, producing iso-
morphic graphs: either 90 ≈ 8, 40 ≈ 7 and 50 ≈ 6, or 90 ≈ 6, 70 ≈ 8 and 50 ≈ 4.

Class IX (Snub quasi-regular polyhedra with n = 6 faces and
reflection symmetries) consists of N = 2 polyhedra with vertex pattern
(p.q.q.q.q.q) or (p.q.q.q.q.q)/2:

U32 W110 Small Snub Icosicosidodecahedron (5/2.3.3.3.3.3)
U72 W118 Small Inverted Retrosnub Icosicosidodecahedron (5/2.3.3.3.3.3)/2.
They both have reflection symmetry SP1 , hence they remain vertex-transitive

even if we forbid reflections. Let us first find TR(P). The flags 1 and 2 in the
unique face p have to be 0-adjacent to each other: 10 ≈ 2, hence 30 = 3202 ≈ 12.

Since all non-unique faces of these two polyhedra have 3 vertices, the 0-1
cycle passing through vertices representing orbits of flags 4, 3, 12 and 11 con-
tains exactly 6 vertices. Since all the 0-2 cycles have length dividing 4, and all
the 0-1 cycles must contain 2 or 6 vertices we can easily see (by eliminating a
few impossible cases) that this can happen only in one case: 40 ≈ 7, 50 ≈ 6,
80 ≈ 11,90 ≈ 10. Thus TR(P) is known. And from TR(P) we can easily find
T (P), since the reflection symmetry SP1 implies: 10 ≈ 2, 30 ≈ 12, 40 ≈ 11,
50 ≈ 10, 60 ≈ 9, 70 ≈ 8.

Class X (Snub quasi-regular polyhedra with n = 6 faces) without
reflection symmetries consists of N = 2 polyhedra with vertex pattern
(p.q.r.q.q.q) or (p.q.p∗.q.q.q):

U46 W112 Snub Icosidodecadodecahedron (5.3.5/3.3.3.3)
U64 W Great Snub Dodecicosidodecahedron (5/3.3.5/2.3.3.3)
There are n = 6 faces around each vertex. So we have a 1-2 cycle with 12

flags 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. These two polyhedra have no reflection
symmetries. Hence T (P) = TR(P) and there are exactly 12 orbits of flags.

Each of these two polyhedra has two faces p and r with 5 vertices and four
triangular faces q. Since the number of different flags in a face divides the
number of flags in that face, there are only two different flags in faces p and
r and there can be only two or six different flags in faces q. As a consequence
the 0-adjacent pairs 10 ≈ 2 in p and 50 ≈ 6 in r imply 30 ≈ 12 and 40 ≈ 7.
Since triangular faces can have only flags from either 2 or 6 different orbits,
the 1-2 path passing through vertices 11, 12, 3, 4, 7, 8 must be a part of a 1-2
cycle of length 6, thus: 80 ≈ 11 and 90 ≈ 10.

This completes the proof of the Theorem 1.�



90

6 Summary and Open Problems

This paper is a short summary of a long work on calculating the symmetry-type
graphs of the 75 uniform polyhedra which finally led to the classification of
uniform polyhedra by their symmetry-type graphs. We have found 10 classes
of uniform polyhedra (Figure 3).

I.REGULAR 

(p.p.p),(p.p.p.p),(p.p.p.p.p),(p.p.p.p.p)/2 

VI. TRUNCATED QUASI-REGULAR 

(p.q.r) 
1 

 

2a 

 

6b 

 

6+6

 

II.QUASI-REGULAR 

(p.q.p.q),(p.q.p*.q),(p.q.p.q.p.q) 

VII. U75 GREAT DIRHOMBICOSIDODECAHEDRON 

(p.q.r.q.p*.q.r*.q) 
2 

 

4a 

 

8a 

 

16a 

 
III.TRUNCATED REGULAR 

(p.q.q) 

VIII. SNUB QUASI-REGULAR , n=5 

(p.q.q.q.q),(p.q.q.q.q)/2 
3 

 

6a 

 
 

10a 

 

10a 

 

IV.VERSI QUASI-REGULAR 

(p.q.r.q),(p.q.q.q) 

IX. SNUB, n = 6, reflection symmetry SP1  
(p.q.q.q.q.q), (p.q.q.q.q.q)/2 

4 

 

8a 

 

6c 

 

12a 

 

V.SEMI QUASI-REGULAR  

(p.q.p*.q*) 

X. SNUB,  n = 6, no reflection symmetries 

(p.q.r.q.q.q),(p.q.p*.q.q.q) 
4b 

 

8d 

 

12a 

 

12a 

 

 

Figure 3: Symmetry-type graphs T (P) and TR(P) of uniform polyedra.
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Our conjecture (»Uniform polyhedra with the same vertex pattern type
have the same symmetry type graphs.«), based on the similar classification of
Platonic and Archimedean solids [9], finally turned out to be true. We have
seen (Theorem 1) that the symmetry-type graphs T (P) and TR(P) of any
uniform polyhedron P depend only on its vertex type.

Our method and algorithm can be expressed briefly as follows: Look for
rotation and reflection symmetries of any 1-2 cycle of flags, reduce it into a
smaller 1-2 cycle or a 1-2 path, and determine the 0-edges. This method of
finding symmetry-type graphs can be adapted to non-uniform polyhedra: If
there are k orbits of vertices, look for rotation and reflection symmetries of 1-2
cycles around representatives of these orbits, reduce these cycles into smaller
1-2 cycles or 1-2 paths, and determine the 0-edges«.

Some related open problems are: 1) Find the symmetry-type graphs of
the 92 Johnson solids; 2) Classify polyhedra with 2 orbits of vertices; 3) Find
symmetry-type graphs of the medials Me(P) and truncations Tr(P) of all
uniform polyhedra.

This paper builds on the ideas and results from many papers of this area: A
classification of edge-transitive maps has been made in [12]. An enumeration
of edge-transitive types is given in [5]. The classification of all edge-transitive
maps in the torus according to their automorphism group type is given in [20].
Flag graphs first appeared in [10] (there the term »gems«, an acronym for
graph-encoded maps, was used). Flag graphs and transformations on maps
are discussed in [16]. The question of enumeration of uniform polyhedra is
discussed in Problem 26 of [18].

Acknowledgement. I would like to thank professor Tomaž Pisanski for
giving me this problem and for his valuable suggestions how to solve it.
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