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Abstract 

       In this paper, we constructed seventh splines of deficiency seven 

used it for the solution of initial value problems. The convergence 

analysis of the given method is investigated. Numerical illustrations 

are given to show the applicability and efficiency of our 

construction.    
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1 Introduction 

        We consider the fifth order initial value problems of the form: 
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(1) 

With the help of lacunary spline functions of type (0, 1, 4) see Jwamer [9], by 

using that )]1,0([ 21 RCf n   , 2n and that it satisfies the Lipschitz continuous 
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for all ]1,0[x  and all real 2121 ,,, yyyy   form Gyorvari [ 3]. These conditions 

ensure the existence of unique solution of the problem (1). The analytic solution 

of (1) for arbitrary choices of f(x) cannot be found in general. We usually resort to 

some numerical method for obtaining an approximate solution of the problem (1). 

The standard numerical methods for the numerical treatment of (1) consist of 

Taylor’s method, Euler’s method, finite difference methods, collocation methods. 

A long list of references of all of these methods is given by [1-2]. Since then 

many papers have appeared dealing with the continuous approximation of y(x) 

satisfying (1) via cubic, quantic and sixth splines mainly (see [3-5]).     

            We recall the basics of brief description method in Section 2 as a 

preliminary. The derivation of the difference schemes spline function has been 

given in Section 3, and also, we have shown the convergence analysis are studied 

and then prove that the interpolation problem is constructible with respect 

theorem1 . We have solved two numerical examples to demonstrate the 

applicability of the methods with the new algorithm in section 4. In the last 

section, the discussion on the results is given in Section 5. 

2  The spline function )(xS     

 Using these approximate values 
)(q

iy )....,,2,1,0.,4,1,0( miq   and  

00 , yy   on the bases of Jwamer [ ], we construct the lacunary spline function 

)(xS  of the type (0, 1, 4),  ( )()( xSxS i  if 1 ii xxx )  and denote by 8

7,nS  

the class of seven degree splines )(xS  as the following: 
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Where 4,1,0q , are known derivatives and mi ....,,2,1,0 , the existence and 

uniqueness of the above spline function have been shown in [ 7],  
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    (4)  

Let us examine now intervals ],[ 1ii xx , i=1, 2, …, n-2., Defined )(xSi  as: 



 

 

105                                                 On Optimality of Lacunary Interpolation … 

 

  

7,

7

6,

6

5,

5

)4(
4

3,

3

2,

2

)()()(

24

)(
)()()()(

iiiiii

i
i

iiiiiiii

axxaxxaxx

y
xx

axxaxxyxxyxS







        (5) 

Here from equation (4), (5) and the polynomial coefficients in [7], we can find the 

following coefficients    

)3(

0203

)4(

0

)4(

10140155,0
4

3

4

13
)(

240

1
)174(

2

1
)(

2

21
y

h
y

h
yy

h
yy

h
yy

h
a 

;  

)3(

0405

)4(

0

)4(

120150166,0
6

54
)11(

120

1
)113(

1
)(

14
y

h
y

h
yy

h
yy

h
yy

h
a 




; 

and 

)3(

0405

)4(

0

)4(

130160177,0
4

1

4

5
)6(

240

1
)72(

2

1
)(

2

9
y

h
y

h
yy

h
yy

h
yy

h
a 

 

also  

)3(

00

)4(

0

)4(

1

2

010122,1
44

7
)4(

240
)138(

2

1
)(

2

21
y

h
yyy

h
yy

h
yy

h
a 




; 

)3(

0

2

0

)4(

0

)4(

10120133,1
12

7

4

15
)2(

48
)2510(

2

1
)(

2

35
y

h
y

h
yy

h
yy

h
yy

h
a 




. 

We can find the approximate coefficients in intervals ],[ 1ii xx , i=1, 2, …, n-2., to 

defined )(xSi as [9]. 
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also  
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Similarly for the last interval ],[ 1 nn xx  , we can define approximate values 

of )(xSn . 

 

3  Theoretical Scheme    

 The new approximate spline function )(xS  given in the section before to 

the exact solution of the fourth order initial value problem (1) and corresponding 

to the values of iy ( mi ....,,2,1,0 ) of a problem (1), and prove the following 

theorem: 

Theorem 1: Let )...,2,1,0;4,1,0()( miqy q

i   be the approximate values 

defined above. Then the following estimates of spline function )(xS are valid:    

 (i)  
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 where qq TG and denote the difference constants dependent of h . 

(ii) ,8....,,0for;)()()( 7

8)()(   qhhUxSxy q

q
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i  where )(xy is a solution of 

problem (1) and qD  denote the difference constants dependent of h . 

Proof: (i) From theorem 1 of [8] and equation (3), we have 
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of h. 
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where 9873 1680360 CCCH   and 987 and, CCC   are constants  dependent 

of h. 

And hence  
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Where 2100 HHHG  , dependent of h. 

By taking the derivatives of equation (4), we obtain the following: 

1100 )()( yyxSxS   
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which clear that  from (3) is known, 
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and by successive differentiations obtain 
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This proves (i) for 0k  ],[and 10 xxx . Further more in the interval 
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Similarly, it's clear that, to show the following:  
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Where 14131211100 4802520360120 CCCCCH  , and 

1413121110 and,,, CCCCC  are constants  dependent of h. 
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and 1918171615 and,,, CCCCC   are constants  dependent of h. 
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where 2H and 2423222120 and,,, CCCCC  be a constants dependent of h. 

And also  

)(736,6, hHaa ii  ; 

)(747,7, hHaa ii  , where 8764 and,, HHHH  are dependent of h. 

and by taking the successive differentiation, we can find ;8....,,1,0where qTq  

similarly as before 
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i   Which is prove (i) for 

.2,...,1  mi  

We can repeat the same manner in above for 1 mi .   

Proof of theorem 1 (ii): 
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From theorem 2 of  [5], the following estimates are valid 
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Using equation (7) and estimate in (i), we have 
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where ,8....,,1,0q Which is proves (ii). 

Theorem 2: If the function f in problem (1) satisfies conditions (2) and (3), then 

the following inequalities are hold: 
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of h and ],[ 1 mm xxx  . 

Proof: Using condition (1), (2) and (3), we have 
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That is proves theorem 2 with the help theorem 1. 

Note: Similar manner to theorem 2 was proved under different conditions by 

Saxena  [9], and Gyorvari  [3]. 

4  Numerical Results 

     Finally, we proceed to show numerical tests of the described algorithms. We 

want to analyze the local regularity of the derivatives method; we now consider 

two numerical examples illustrating the comparative performance of spline 

method. All calculations are implemented by Matlab program [1-2]. For the sake 

of comparisons we also tabulated the results seen that the present method is better 

than method [5].    

Algorithm: 

Step 1: Partition ],[ ba into N subintervals I. 

Step 2: Set  
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 ii yS      ( i=0, 1, 2, …, N) , ii yS      ( i=0, 1, 2, …, N)       

 )4()4(

ii yS    ( i=0, 1, 2, …, N-1)                                                                                  

 and with initial condition 00 yS  . 

Step 3: Use (Theorem 1 (i)) to find ..,..,2,1, NiSS ii    

Step 4: Use (Theorem 1 (i)) to find the derivatives of 
ii SS   at N equally spaced 

points in each subinterval    ],[ 1 ii xxx   go to step 5, else i=i+1 and repeat this 

iteration to find a proper i. 

Step 5: Stop. 

 Problem 1: [6] Consider that the fifth order intial value problem 

0)4()5(  yyyy  where ]1,0[x  , 

1)0()0()0()0()0( )4(  yyyyy , and the exact solution is xexy )( .  

Problem 2: [10] Consider that the third order initial value problem 

02'2  yyyy  where ]1,0[t , 3)0(,2)0(,3)0(  yyy  the exact 

solution is 1)cos()( 2   texy t . 

Table 1  Absolute maximum error for the derivatives )(xS .  

h 


 )()( xyxs  


 )()( xyxs  


 )()( )5()5( xyxs  

0.1 8104768.8   6102537.4   3102.5   

0.01 11107657.4   `81038571.2   3106.5   

0.001 18103892.1   14100839.2   
7103354.8   

0.0001 231096.38.1   18100844.2   7103378.8   

 

 

 

h 


 )()( )6()6( xyxs  


 )()( )7()7( xyxs  

0.1 21038.10   11045.10   

0.01 110047.28   01068.505   

0.001 3105.2   110009.35   

0.0001 4105013.2   0105019.3   
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Table 2  Absolute maximum error for the derivatives )(xS .  

h 


 )()( xyxs  


 )()( xyxs  


 )()( )5()5( xyxs  

0.1 5100314.1   4101209.5   110027.6   

0.01 11106183.6   `8103061.3   21012.1   

0.001 16107769.1   12106653.2   
4100661.1   

0.0001 11107762.1   710661.6   3103323.1   

 

h 


 )()( )6()6( xyxs  


 )()( )7()7( xyxs  

0.1 010902.11   0103.117   

0.01 11076.36   01001.559   

0.001 110198.3   01077.447   

0.0001 0103949.6   01091.111   

6  Conclusion 

         As we expected, the maximum absolute errors in the solution of the fifth and 

third order initial value problems given by our construction are smaller than the 

errors in the constructions in [5,7 and 8], also we can using this model to find the 

approximate solution for all order initial value problems with a  good result even 

for small h. Moreover, we found new construction, gives more accurate results in 

comparison with sixth and seventh spline used in [7].      

7 Open Problem 

In this work, we present a numerical method for solving the higher order initial 

value problems; we can develop the idea for boundary value problems, system of 

differential equations and partial differential equations difference type of 

boundary conditions. 
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