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Abstract

In this paper we construct invariant regions only in terms of the eigenvalues
and entries of the diffusion matrix associated to a class of reaction diffusion
systems with a general full matrix of diffusion coefficients and nonhomogeneous
boundary conditions. This generalizes all the above papers (see S. Abdelmalek
[1] in the case of tripled component systems and S. Kouachi [15], [16], [17]
and [18]) where invariant regions are constructed in terms of a very compli-
cated constants. In these regions we establish global existence of solutions for
reaction-diffusion systems without balance law-condition ( f + g ≡ 0). Our
techniques are based on invariant regions and Lyapunov functional methods.
The nonlinear reaction terms has been supposed to be of polynomial growth.
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1 Introduction

We consider the following reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v = f(u, v) in R+ × Ω, (1.1)

∂v

∂t
− a21∆u− a22∆v = g(u, v) in R+ × Ω, (1.2)

with the boundary conditions

λu + (1− λ)
∂u

∂η
= β1 and λv + (1− λ)

∂v

∂η
= β2 on R+ × ∂Ω, (1.3)

where Robin nonhomogeneous boundary conditions (0 < λ < 1 and βi ∈
R, i = 1 and 2) or homogeneous Neumann boundary conditions (λ = βi =
0, i = 1 and 2) or homogeneous Dirichlet boundary conditions (1− λ = βi =
0, i = 1 and 2.) are assumed and the initial data

u(0, x) = u0(x), v(0, x) = v0(x) in Ω, (1.4)

where Ω is an open bounded domain of class C1 in RN , with boundary ∂Ω and
∂

∂η
denotes the outward normal derivative on ∂Ω. The constants aij, (i, j =

1, 2) are supposed to be positive and satisfy(
a12 + a21)

2 ≤ 4a11a22

)
(1.5)

which reflects the parabolicity of the system and implies at the same time that
the matrix of diffusion

A =

(
a11 a12

a21 a22

)
is positive definite; that is the eigenvalues λ1 and λ2 (λ1 < λ2) of it’s transposed
are positive. The initial data and (β1, β2) are assumed to be in the following
region

Σ =


{(u0, v0) ∈ R2 such that λ1v0 ≤ a21u0 + a22v0 ≤ λ2v0} ,

or
{(u0, v0) ∈ R2 such that λ1u0 ≤ a11u0 + a12v0 ≤ λ2u0} .

(1.6)

One will treat the first case, the second one will be discussed at the last section.
We suppose that the reaction terms f and g are continuously differentiable,
polynomially bounded on Σ, (f(r, s), g(r, s)) is in Σ for all (r, s) in ∂Σ (we say
that (f, g) points into Σ on ∂Σ); that is

λ1g(r, s) ≤ a21f(r, s) + a22g(r, s), for all r and s such that λ1s = a21r + a22s
and

a21f(r, s) + a22g(r, s) ≤ λ2g(r, s), for all r and s such that a21r + a22s = λ2s,
(1.7)
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and for positive constants C and α > a22 − λ1sufficiently close to a22 − λ1, we
have

a21f(u, v) + Cg(u, v) ≤ C1 (a21u + αv + 1) for all u and v in Σ (1.8)

where C1 is a positive constant.
The trivial case where a12 = a21 = a11−a22 = 0; nonnegative solutions exist

globally in time. Always in this case with homogeneous Neumann boundary
conditions but when a11 6= a22 (diagonal case), N. Alikakos [2] established
global existence and L∞-bounds of solutions for positive initial data when

g(u, v) = −f(u, v) = uvβ, (1.9)

and 1 < β < (n+2)
n

. The reactions given by (1.8) satisfy in fact a condition
analogous to (1.7) and form a special case since (f, g) point into Σ on ∂Σ by
taking Σ = R+ × R+. K. Masuda [21] showed that solutions to this system
exist globally for every β > 1 and converge to a constant vector as t → +∞.
A. Haraux and A. Youkana [6] have generalized the method of K. Masuda to
handle nonlinearities uF (v) that are form a particular case of our one; since
they took also Σ = R+ × R+. Recently S. Kouachi and A. Youkana [19] have
generalized the method of A. Haraux and A. Youkana to the triangular case
(a12 = 0) and by taking nonlinearities f(u, v) of a weak exponential growth.
J. I. Kanel and M. Kirane [10] have proved global existence , in the case
g(u, v) = − f(u, v) = uvn and n is an odd integer, under the embarrassing
condition

|a12 − a21| < Cp, (1.10)

where Cp contains a constant from an estimate of Solonnikov. Then they
ameliorate their results in [11] to obtain global existence under the restrictive
conditions

a22 < a11 + a21,

a12 < ε0 ≡
(

a11a22(a11+a21−a22)
a11a22+(a11+a21−a22)

)
if a11 ≤ a22 < a11 + a21,

a12 < min
{

1
2
(a11 + a21) , ε0

}
,

(1.11)

and

|F (v)| ≤ CF (1 + |v|1+ε , (1.12)

where ε and CF are positive constants with ε < 1 sufficiently small and
g(u, v) = − f(u, v) = uF (v). All techniques used by authors cited above
showed their limitations because some are based on the embedding theorem of
Sobolev as Alikakos [1], Hollis-Martin-Pierre [8], ... another as Kanel-Kirane
[11] used a properties of the Neumann function for the heat equation for which
one of it’s restriction the coefficient of −∆u in equation (1.1) must be bigger
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than the one of −∆v in equation (1.2) whereas it isn’t the case of problem
(1.1)-(1.4).

This article is a continuation of [16] where a11 = a22 and σg + ρf ≡ 0 with
σ and ρ are any positive constants and the function g(u, v) is positive and
polynomially bounded. In that article we have considered the homogeneous
Neumann boundary conditions and established global existence of solutions
with initial data in an invariant region which is a special case of that considered
here. Recently in S. Kouachi [18] and always in the case where a11 = a22, we
have eliminated the balance’s condition which has been replaced by a condition
analogous to (1.8).

The components u(t, x) and v(t, x) represent either chemical concentrations
or biological population densities and system (1.1)-(1.2) is a mathematical
model describing various chemical and biological phenomena ( see P. L. Garcia-
Ybarra and P. Clavin [4], S. R. De Groot and P. Mazur [5], J. Jorne [9], J. S.
Kirkaldy [14], A. I. Lee and J. M. Hill [20] and J. Savchik, B. Changs and H.
Rabitz [23].

2 Local existence and Invariant regions.

In this section, we prove that if (f, g) points into Σ on ∂Σ then Σ is an invariant
region for problem (1.1)-(1.4), i.e. the solution (u(t, .), v(t, .)) remains in Σ for
all (u0, v0) ∈ Σ, u0, v0 bounded in Ω . At this stage and once the invariant
regions are constructed, both problems of local and global existence become
easier to be established: For the first problem we demonstrate that system
(1.1)-(1.2) with boundary conditions (1.3) and (u0, v0) ∈ Σ, u0, v0 bounded
in Ω is equivalent to a problem for which local existence over the whole time
interval [0, Tmax[ can be obtained by known procedure and for the second, since
we use usual techniques based on Lyapunov functionals which are not directly
applicable to problem (1.1)-(1.4) and need invariant regions (see M. Kirane
and S. Kouachi [12], [13], S. Kouachi [15] and [16] and S. Kouachi and A.
Youkana [19]).

The main result of this section is the following

Suppose that (f, g) points into Σ on ∂Σ, then for any (u0, v0) in Σ the solu-
tion (u(t, .), v(t, .)) of the problem (1.1)-(1.4) remains in Σ for all t in [0, Tmax[.

Let T ∗ < Tmax be an arbitrary positive number and let λ1 and λ2 (λ1 < λ2)
the eigenvalues of the matrix At associated respectively with the eigenvectors(

x11 x12

)t
and

(
x21 x22

)t
. For i = 1, 2 fixed, multiplying equation (1.1)

through by xi1 and equation (1.2) by xi2 and adding the resulting equations
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we get

∂w1

∂t
− λ1∆w1 = (x11f + x12g) = F1(w1, w2) in ]0, T ∗[× Ω (2.1)

∂w2

∂t
− λ2∆w2 = (x21f + x22g) = F2(w1, w2) in ]0, T ∗[× Ω, (2.2)

with the boundary conditions

λwi + (1− λ)
∂wi

∂η
= ρi, i = 1, 2 on ]0, T ∗[× ∂Ω , (2.3)

and the initial data

wi(0, x) = w0
i (x), i = 1, 2 in Ω, (2.4)

where
wi = (xi1u + xi2v) (t, x), i = 1, 2 in ]0, T ∗[× Ω (2.5)

for all (t, x) in ]0, T ∗[× Ω,

ρi = (xi1β1 + xi2β2) , i = 1, 2

and
Fi(w1, w2) = (xi1f + xi2g) , i = 1, 2, for all u and v in Σ. (2.6)

Remark that the condition (1.5) of parabolicity of the system (1.1)-(1.2) im-
plies the one of the system (2.1)-(2.2) ; since it implies the positivity of the
determinant of A which together with the positivity of its entries gives the
eigenvalues λ1 and λ2 (λ1 < λ2) of the matrix At are positive. In these con-
ditions we can conclude that problem (2.1)-(2.4) with diffusion coefficients λ1

and λ2 is equivalent to problem (1.1)-(1.4) and to prove that Σ given by (1.6)
is an invariant region for system (1.1)(1.2) it suffices to prove that the region{

(w0
1, w

0
2) ∈ R2 such that w0

i ≥ 0, i = 1, 2,
}

= R+ × R+, (2.7)

is invariant for system (2.1)-(2.2) and that

Σ =
{
(u0, v0) ∈ R2 such that w0

i = (xi1u0 + xi2v0) ≥ 0, i = 1, 2,
}

. (2.8)

Since
(

xi x2i

)t
is an eigenvector of At associated to the eigenvalue λi, i =

1, 2, then if we assume without loss of generality that a11 ≤ a22 we have
(a11−λi)xi1+a21xi2 = 0, i = 1, 2. If we choose x12 = a11−λ1 and x22 = λ2−a11

then (xi1u0 + xi2v0) ≥ 0, i = 1, 2,⇔ −a21u0 + (a11 − λ1) v0 ≥ 0 and a21u0 +
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(λ2 − a11) v0 ≥ 0 ⇔ −a21u0 + (λ2 − a22) v0 ≥ 0 and a21u0 + (a22 − λ1) v0 ≥ 0.
Then (2.8) is proved and (2.5) can be written

w1 = −a21u + (λ2 − a22) v and w2 = a21u + (a22 − λ1) v.

Now, to prove that the region R+ × R+ is invariant for system (2.1)-(2.2),
it suffices to show that F1(w1, w2) ≥ 0 for all (w1, w2) such that w1 = 0 and
w2 ≥ 0 and F2(w1, w2) ≥ 0 for all (w1, w2) such that w1 ≥ 0 and w2 = 0 thanks
to the invariant region’s method (see Smoller [24] ). But using the expressions
(2.7), we get

F1(w1, w2) = −a21f+(λ2 − a22) g and F2(w1, w2) = a21f+(a22 − λ1) g. (2.6)
′

Following the same reasoning as above and taking in the account that v0 ≥ 0
in Σ, we lead to condition (1.7). Since T ∗ < Tmax is arbitrary, then Σ is an
invariant region for the system (1.1)-(1.3)

Then system (1.1)-(1.2) with boundary conditions (1.3) and initial data
in Σ is equivalent to system (2.1)-(2.2) with boundary conditions (2.3) and
positive initial data (2.4). As it has been mentioned at the beginning of this
section and since ρ1 and ρ2 given by

ρ1 = −a21β1 + (λ2 − a22) β2 and ρ2 = a21β1 + (a22 − λ1) β2

are positive, then for any initial data in C
(
Ω

)
or Lp(Ω), p ∈ (1, +∞); local ex-

istence and uniqueness of solutions to the initial value problem (2.1)-(2.4) and
consequently those of problem (1.1)-(1.4) follow from the basic existence theory
for abstract semi-linear differential equations (see A. Friedman [3], D. Henry
[7] and Pazy [22]). The solutions are classical on ]0, T ∗[ , where T ∗ denotes the
eventual blowing-up time in L∞(Ω). The local solution is continued globally
by a priori estimates.

The positivity of the matrix’s diffusion’s coefficients implies that

λ1 < a11 < a22 < λ2.

Once invariant regions are constructed, one can apply Lyapunov technique
and establish global existence of unique solutions for (1.1)-(1.4).

3 Global existence.

As the determinant of the linear algebraic system (2.5), with regard to variables
u and v, is different from zero, then to prove global existence of solutions of
problem (1.1)-(1.4) comes back in even to prove it for problem (2.1)-(2.4). To
this subject, it is well known that (see Henry [7]) it suffices to derive an uniform
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estimate of ‖F1(w1, w2)‖p and ‖F2(w1, w2)‖p on [0, T ∗[ for some p > N/2, where
‖.‖pdenotes the usual norms in spaces Lp(Ω) defined by

‖u‖p
p =

1

|Ω|

∫
Ω

|u(x)|p dx, 1 ≤ p < ∞ and ‖u‖∞ = ess
x∈Ω

sup |u(x)|

Let us define, for all positive integer p, the finite sequence

θi = θ(p−i)2 , i = 0, 1, ..., p (3.1)

where θ is a positive constant sufficiently large such that

θ >
TrA

2
√

det A
≡ (a11 + a22)

2
√

a11a22 − a12a21

. (3.2)

Let us define, for a fixed positive integer p, the functional

t −→ L(t) =

∫
Ω

Hp (w1(t, x), w2(t, x)) dx, (3.3)

where

Hp(w1, w2) =

p∑
i=0

Ci
pθiw

i
1w

p−i
2 , (3.4)

with Ci
p denotes the well known binomial coefficient. The main result of this

section is the following
Let (w1(t, .), w2(t, .))be any positive solution of the problem (2.1)-(2.4),

then the functional L defined by (3.3)-(3.4) is uniformly bounded on the in-
terval [0, T ∗], T ∗ < Tmax.

The proof is similar to that in S. Kouachi [15].
Differentiating L with respect to t yields

L′(t) =

∫
Ω

[
∂Hp

∂w1

∂w1

∂t
+ ∂Hp

∂w2

∂w2

∂t

]
dx

=

∫
Ω

(
λ1

∂Hp

∂w1
∆w1 + λ2

∂Hp

∂w2
∆w2

)
dx +

∫
Ω

(
F1

∂Hp

∂w1
+ F2

∂Hp

∂w2

)
dx

= I + J.

By simple use of Green’s formula we have

I = I1 + I2
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where

I1 =

∫
∂Ω

(
λ1

∂Hp

∂w1

∂w1

∂η
+ λ2

∂Hp

∂w2

∂w2

∂η

)
dx (3.5)

and

I2 = −
∫
Ω

(
λ1

∂2Hp

∂w2
1
|∇w1|2 + (λ1 + λ2)

∂2Hp

∂w1∂w2
∇w1∇w2 + λ2

∂2Hp

∂w2
2
|∇w2|2

)
dx.

(3.6)
First, let’s calculate the first and second partial derivatives of Hp with respect
to w1 and w2. We have

∂Hp

∂w1

=

p∑
i=1

(
iCi

pθiw
i−1
1 wp−i

2

)
and

∂Hp

∂w2

=

p−1∑
i=0

(
(p− i)Ci

pθiw
i
1w

p−i−1
2

)
.

Using the formula
iCi

p = pCi−1
p−1, for all i = 1, ..., p (3.7)

and changing the index i by i− 1, we get

∂Hp

∂w1

= p

p−1∑
i=0

(
Ci

p−1θi+1w
i
1w

p−1−i
2

)
. (3.8)

For
∂Hp

∂w2

, using (3.7) and the fact that

Ci
p = Cp−i

p , for all i = 0, ..., p, (3.9)

we get

∂Hp

∂w2

= p

p−1∑
i=0

(
Ci

p−1θiw
i
1w

p−1−i
2

)
. (3.10)

Using formulas (3.8) and (3.10), we deduce by analogy

∂2Hp

∂w2
1

= p(p− 1)

p−2∑
i=0

(
Ci

p−2θi+2w
i
1w

p−2−i
2

)
, (3.11)

∂2Hp

∂w1∂w2

= p(p− 1)

p−2∑
i=0

(
Ci

p−2θi+1w
i
1w

p−2−i
2

)
(3.12)
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and

∂2Hp

∂w2
2

= p(p− 1)

p−2∑
i=0

(
Ci

p−2θiw
i
1w

p−2−i
2

)
. (3.13)

Now we claim that there exists a positive constant C2 independent of t ∈
[0, Tmax[ such that

I1 ≤ C2 for all t ∈ [0, Tmax[. (3.14)

To see this, we follow the same reasoning as in S. Kouachi [15]:
In the case of Robin nonhomogeneous boundary conditions, using the boundary
conditions (1.4) we get

I1 =

∫
∂Ω

(
λ1

∂Hp

∂w1
(γ1 − σw1) + λ2

∂Hp

∂w2
(γ2 − σw2)

)
dx,

where σ =
λ

1− λ
and γi =

ρi

1− λ
, i = 1, 2.

Since

H(w1, w2) = a∂Hp

∂u
(γ1 − σw1) + b∂Hp

∂v
(γ2 − σw2)

= Pp−1(w1, w2)−Qp(w1, w2),

where Pp−1 and Qp are polynomials with positive coefficients and respective
degrees p− 1 and p and since the solution is positive, then

lim sup H(w1, w2)
(|w1|+|w2|)→+∞

= −∞, (3.15)

which prove that H is uniformly bounded on R2
+ and consequently (3.14).

When the boundary conditions are homogeneous of Neumann type, then I1 = 0
on [0, Tmax[ .
Finally the case of homogeneous Dirichlet conditions is trivial, since in this case

the positivity of the solution on [0, Tmax[×Ω implies
∂w1

∂η
≤ 0 and

∂w2

∂η
≤ 0 on

[0, Tmax[×∂Ω. Consequently one gets again (3.14) with C2 = 0.

I2 = −p(p− 1)

p−2∑
i=0

Ci
p−2

∫
Ω

wi
1w

p−2−i
2 Ti (∇w1,∇w2) dx,

where

Ti (∇w1,∇w2) =
(
λ1θi+2 |∇w1|2 + (λ1 + λ2) θi+1∇w1∇w2 + λ2θi |∇w2|2

)
,

i = 0, 1, ..., p− 2.
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Using (3.1) and (3.2) we deduce that the quadratic forms (with respect to
∇w1 and ∇w2) are positive since

((λ1 + λ2) θi+1)
2−4λ1λ2θiθi+2 = θ2

i+1

(
(λ1 + λ2)

2 − 4λ1λ2θ
2
)

< 0, i = 0, 1, ..., p−2.
(3.16)

Then

I2 ≤ 0. (3.17)

(3.8) and (3.10) together imply

J = p

p−1∑
i=0

Ci
p−1w

i
1w

p−1−i
2

∫
Ω

Gi(w1, w2)dx,

where

Gi(w1, w2) = (θi+1F1(w1, w2) + θiF2(w1, w2)) .

We have

Gi(w1, w2) = a21 (−θi+1 + θi) f(u, v) + [(λ2 − a22) θi+1 + (a22 − λ1) θi] g(u, v)

= [(λ2 − a22) θi+1 + (a22 − λ1) θi]
[
a21Γ

(
θi

θi+1

)
f(u, v) + g(u, v)

]
,

where

Γ
(

θi

θi+1

)
=

θi
θi+1

−1[
(a22−λ1)

θi
θi+1

+(λ2−a22)
] , i = 0, 1, ..., p− 2.

Since the function x → x−1
(a22−λ1)x+(λ2−a22)

is increasing with lim
x→+∞

x−1
(a22−λ1)x+(λ2−a22)

=

1
(a22−λ1)

and since θi

θi+1
is sufficiently large by choosing θ sufficiently large, then

by using condition (1.8) and relation (2.6) successively we get, for an appro-
priate constant C3,

J ≤ C3

∫
Ω

[
p∑

i=1

(w1 + w2 + 1) Ci−1
p−1w

i−1
1 wp−i

2

]
dx.

Following the same reasoning as in S. Kouachi [17], a straightforward calcula-
tion shows that

L′(t) ≤ C4L(t) + C5L
(p−1)/p(t) on [0, T ∗].

While putting

Z = L1/p,

one gets

pZ ′ ≤ C4Z + C5.
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The resolution of this linear differential inequality yields the uniform bound-
lessness of the functional L on the interval [0, T ∗], what finishes at the same
time our reasoning and the proof of the theorem.

Suppose that the functions f(r, s) and g(r, s) are continuously differentiable
on Σ, point into Σ on ∂Σ and satisfy condition (1.8). Then all solutions of
(1.1)-(1.4) with (u0, v0) ∈ Σ, u0, v0 bounded in Ω are in L∞(0, T ∗; Lp(Ω)) for
all p ≥ 1.

The proof is an immediate consequence of theorem 3.1, the trivial inequality∫
Ω

(w1(t, x) + w2(t, x))p dx ≤ L(t) on [0, T ∗[, for all p ≥ 1

and (2.5).
Under hypothesis of corollary 3.2, if the reactions f(r, s) and g(r, s) are

polynomially bounded, then all solutions of (1.1)-(1.3) with (u0, v0) ∈ Σ, u0, v0

bounded in Ω are global in time.

As it has been mentioned above; it suffices to derive an uniform estimate of
‖F1(w1, w2)‖p and ‖F2(w1, w2)‖p on [0, T ∗[ for some p > n/2. Since the func-
tions f(u, v) and g(u, v) are polynomially bounded on Σ, then using relations
(2.5) and (2.6) we get that F1(w1, w2) and F2(w1, w2) are too and the proof
becomes an immediate consequence of corollary 3.2.

4 Final remarks.

If λ1β1 ≤ a11β1 + a12β2 ≤ λ2β1, then system (1.1)-(1.2) can be written as

∂v

∂t
− a22∆v − a21∆u = f̃(v, u) in R+ × Ω, (1.1)

′

∂u

∂t
− a12∆v − a11∆u = g̃(v, u) in R+ × Ω (1.2)

′

with the same boundary conditions (1.3) and initial data (1.4) and where

f̃(v, u) = g(u, v) and g̃(v, u) = f(u, v) for all (u, v) in R2.

In this case, the diffusion-matrix of system becomes

A =

(
a22 a21

a12 a11

)
.

Then all previous results remain valid in the region{
(v0, u0) ∈ R2 such that λ1u0 ≤ a12v0 + a11u0 ≤ λ2u0

}
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which can be written for system (1.1)-(1.2) as

Σ =
{
(u0, v0) ∈ R2 such that λ1u0 ≤ a11u0 + a12v0 ≤ λ2u0

}
.

(f̃ , g̃) points into Σ on ∂Σ) if

λ1g̃(s, r) ≤ a12f̃(s, r) + a11g̃(s, r), for all r and s such that λ1r = a12s + a11r

and

a12f̃(s, r) + a11g̃(s, r) ≤ λ2g̃(s, r), for all r and s such that a12s + a11r = λ2r,

which is equivalent to
λ1f(r, s) ≤ a11f(r, s) + a12g(r, s), for all r and s such that λ1r = a11r + a12s

and
a11f(r, s) + a12g(r, s) ≤ λ2f(r, s), for all r and s such that a11r + a12s = λ2r,

(1.6)
′

and condition (1.8) becomes, for an appropriate constant C1

f̃(v, u) + Cg̃(v, u) ≤ C1 (v + αu + 1) for all u and v in Σ,

for positive constants C and α > a11 − λ1 sufficiently close to a11 − λ1, which
can interpreted as

Cf(u, v) + g(u, v) ≤ C1 (αu + v + 1) for all u and v in Σ, (1.8)
′

for positive constants C and α > a11 − λ1sufficiently close to a11 − λ1.

5 Open Problem

In the case of systems of tripled reaction diffusion equations with a general full
matrix of diffusion coefficients and nonhomogeneous boundary conditions, the
construction of invariant regions only in terms of the eigenvalues and entries
of the diffusion matrix remains an open problem.
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Reaction-Diffusion Equations. Tôhoku. Math. J.40 (1988), 159-163.

[7] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture
Notes in Mathematics 840, Springer-Verlag,New-York, 1984.

[8] S. L. Hollis, R. H. Martin JR and M. Pierre, Global Existence and bounds
in Reaction-Diffusion Systems. Siam. J. Math. Anal, Vol 18, n03, May
1987.

[9] J. Jorne, The diffusion Lotka-Volterra oscillating system. J. Theor. Biol.,
65, 133-139 (1977).

[10] J. I. Kanel and M. Kirane, Pointwise a priori bounds for a strongly cou-
pled system of Reaction-Diffusion Equations with a balance law, Math.
Methods in the applied Sciences, 171 (1999), 227-230.

[11] J. I. Kanel and M. Kirane, Pointwise a priori bounds for a strongly coupled
system of Reaction-Diffusion Equations, International Journal of Diff. Eq.
and Appl., 1, No. 1 (2000), 77-97.

[12] M. Kirane and S. Kouachi, Global Solutions to a System of Strongly Cou-
pled Reaction-Diffusion Equations. Nonlinear Analysis Theory, Methods
and Applications, Vol 126, n08, (1996). USA.

[13] M. Kirane and S. Kouachi, Asymptotic Behavior for a System Describing
Epidemics with Migration and Spatial Spread of Infection. Dynamical
Systems and Applications, Vol 12; number 1, (1993), 121-130.

[14] J. S. Kirkaldy, Diffusion in multicomponent metallic systems. Canadian
J. of Physics, 35, 435-440 (1957).



Explicit Invariant Regions and Global... 29

[15] S. Kouachi, Invariant regions and global existence of solutions for reac-
tion diffusion systems with a full matrix of diffusion coefficients and no
homogeneous boundary conditions, Georgian mathematical journal Vol
11(2004), Number 2, pp 349-359.

[16] S. Kouachi, Global existence of solutions in invariant regions for reac-
tion diffusion systems with a balance law and a full matrix of diffusion
coefficients, E. J. Qual. Theory Diff. Equ., No. 4. (2003), 1-10.

[17] S. Kouachi, Global existence of solutions for reaction diffusion systems
with a full matrix of diffusion coefficients and no homogeneous boundary
conditions. E. J. Qual. Theory Diff. Equ. No.2 (2002), 1-10.

[18] S. Kouachi, Uniform boundlessness and global existence of solutions for
reaction-diffusion systems with a balance law and a full matrix of diffusion
coefficients. E. J. Qualitative Theory of Diff. Equ., No. 7. (2001), pp. 1-9.

[19] S. Kouachi and A. Youkana, Global existence for a class of reaction-
diffusion systems. Bulletin of the Polish Academy of Science, Vol 49, n◦3,
(2001).

[20] A. I. Lee and J. M. Hill, On the general linear coupled system for diffusion
in media with two diffusivities. J. Math. Anal. Appl., 89, 530-557 (1982).

[21] K. Masuda, On the Global Existence and Asymptotic Behavior of So-
lutions of Reaction-Diffusion Equations. Hokkaido. Math. J. 12 (1983),
360-370.

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Equations. Applied Math. Sciences 44, Springer-Verlag, New
York (1983).

[23] J. Savchik, B. Changs and H. Rabitz, Application of moments to the gen-
eral linear multicomponent reaction-diffusion equations. J. Phys. Chem.
37, 1990-1997 (1983).

[24] J. A. Smoller, Shock waves and reaction-diffusion equations. Springer-
Verlag, New York (1983).


