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Abstract

The aim of this work is the study of a nonlocal problem for a
telegraph equation with weighted integral condition. By the Galerkin
method, we construct a discrete numerical solution of the approx-
imate problem, then the convergence of the method and the well
posedness of the problem under study are established.
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1 Introduction

This paper is devoted to the investigation of a non-local problem for a telegraph
equation and a weighted integral condition using the Galerkin method, which
is, a convenient tool for both the theoretical and numerical analysis of the
considered problem.

More precisely we apply Galerkin method to determine a function u =
u(x, t), (x, t) ∈ Q = (0, 1)× (0, T ) , which satisfies, in some appropriate sense,
the telegraph equation

lu =
∂2u

∂t2
− a2(x, t)

∂2u

∂x2
+ c(x, t)u = f(x, t), (1.4)
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subject to the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (1.2)

u(0, t) = 0 (1.3)

and the weighted integral condition∫ 1

0

g(x)u(x, t)dx = 0 (1.4)

where f ∈ L2 (Q) and ϕ, ψ ∈ L2 (0, 1) are given functions that satisfy∫ 1

0

ϕ (x) =

∫ 1

0

ψ (x) = 0.

We mention that Galerkin method does not give only a discrete approximation
scheme, but it provides also a construction proof of the existence of a unique so-
lution. We should mention also here that the presence of the weighted integral
term in the boundary condition leads to more difficulties. Integral conditions
occur when the values of function on the boundary are related to values inside
the domain or when direct measurements on the boundary are not possible.

Problems with integral conditions have many applications in many prob-
lems such as the theory of heat conduction, elasticity, heat, plasma physics,
control theory, etc... In particular, the presence of integral conditions greatly
improves the qualitative and quantitative characteristics of the problem. Many
authors studied nonlocal problem with integral conditions by different meth-
ods, the reader can see the references therein.

By the help of Galerkin method, Guezane-Lakoud, Dabas and Bahuguna
in[11] studied the multidimensional telegraph equation:

lu =
∂2u

∂t2
+ a

∂u

∂t
+ bu− c

∂2u

∂x2
= f (x, t) , (x, t) ∈ Q = Ω× I, (1.5)

subject to the initial conditions (1.2) and the integral condition of type

∂u

∂η

∣∣∣∣
(x,t)∈∂Ω×I

+

∫
Ω

K (x, ξ)u (ξ, t) dξ = 0, ∀x ∈ ∂Ω. (1.6)

Guezane-Lakoud and Boumaza in [12], investigated the one dimensional
case for the equation (1.5) with the the initial conditions (1.2) and the integral
condition of type ∫ 1

0

xu(x, t)dx = 0. (1.7)

The first paper investigated nonlocal problem with integral conditions goes
back to Cannon [4]. Later, mixed problems with integral conditions were
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studied by many authors, we can cite the work of Pulkina [14], Beilin[1,2],
Bahuguna et al [13], Dabas et al [6].

The summarize of this paper is as follows: In the next section we define
the generalized solution and the functional spaces. In section 3 we prove that
the generalized solution if it exists is unique. The existence of the generalized
solution by using Galerkin method is established in the third section, for this,
we construct an approximation solution of the problem (1.1)-(1.4), we prove
that we can extract a subsequence which converges to the desired generalized
solution.

2 Notation and definition

Let L2 (0, 1) be the usual space of Lebesgue square integrable real functions
on (0, 1) whose inner product and norm will be denoted by (., .) and ‖.‖ re-
spectively.

Define the following spaces:

C2
0(Q) =

{
u(x, t) ∈ C2(Q), u(0, t) = 0,

∫ 1

0
u(x, t)dx =

∫ 1

0
g(x)u(x, t)dx = 0

}
C2

T (Q) =
{
v(x, t) ∈ C2(Q), v(x, T ) = 0,

∫ 1

0
v(x, t)dx =

∫ 1

0
g(x)v(x, t)dx = 0

}
The closure of these spaces with respect to the norm

‖u‖2
H(Q) =

∫ T

0

∫ 1

0

[(∫ 1

x

u(ξ, t)dξ

)2

+ (u(x, t))2 +

(∫ 1

x

ut(ξ, t)dξ

)2
]
dxdt

is denoted respectively by H0(Q) and HT (Q). Similarly, we obtain the space
H0(0, 1) as a closure of the space

C2
0(0, 1) =

{
w ∈ C2 [0, 1] , w(0) = 0,

∫ 1

0

xw(x)dx = 0

}
according to the norm

‖w‖2
H0(0,1) =

∫ 1

0

[(∫ 1

x

w(ξ)dξ

)2

+ w2(x)

]
dx.

Let us introduce the notion of a generalized solution. Suppose that u is a
solution of problem (1.1)-(1.4), multiply the both sides of equation (1.1) by∫ 1

x
(g(ξ)− g(x))v (ξ, t) dξ, where v ∈ C2

T (Q), integrate by parts the resultant
equation over the domain Q, use the initial conditions (1.2) and the fact that
v(x, T ) = 0, it yields∫

Q

lu

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt = I1 − I2 + I3
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where

I1 =

∫
Q

utt(x, t)

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt

=

∫ 1

0

g′(x)

(∫ 1

x

ψ (ξ) dξ

)(∫ 1

x

v (ξ, 0) dξ

)
dx

+

∫
Q

g′(x)

∫ 1

x

utdξ

(∫ 1

x

vt (ξ, t) dξ

)
dxdt,

I2 =

∫
Q

a2(x, t)uxx(x, t)

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt

=

∫
Q

a2g′(x)uvdxdt

−
∫

Q

(4aaxg
′(x) + a2g(2))u

(∫ 1

x

v (ξ, t) dξ

)
dxdt

+2

∫
Q

(aax)x u

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt

and

I3 =

∫
Q

c(x, t)u(x, t)

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt =

−
∫

Q

cg′(x)

(∫ 1

x

u (ξ, t) dξ

)(∫ 1

x

v (ξ, t) dξ

)
dxdt

+

∫
Q

cx

(∫ 1

x

u (ξ, t) dξ

)(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt.

Summing I1 − I2 + I3, we get∫
Q

[
g′(x)

∫ 1

x

utdξ

∫ 1

x

vt (ξ, t) dξ − a2g′(x)uv − (4aaxg
′(x) (2.1)

+a2g(2))u

∫ 1

x

v (ξ, t) dξ − cg′(x)

∫ 1

x

u (ξ, t) dξ

∫ 1

x

v (ξ, t) dξ

+ (cx − 2 (aax)x)

(∫ 1

x

u (ξ, t) dξ

)(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)]
dxdt

=

∫
Q

f(x, t)

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt

−
∫ 1

0

g′(x)

(∫ 1

x

ψ (ξ) dξ

)(∫ 1

x

v (ξ, 0) dξ

)
dx.
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Definition 2.1 By a generalized solution of problem (1.1)-(1.4), we mean
a function u ∈ H0 (Q)satisfying for all v ∈ HT (Q) identity (2.1) and the

condition
∫ 1

x
u(ξ, 0)dξ =

∫ 1

x
ϕ(ξ)dξ.

3 Uniqueness of generalized solution

To study the solvability of problem, we make the following hypotheses
H1: The functions a (x, t) and c (x, t) are nonnegative and satisfy

0 < a0 ≤ a (x, t) ≤ A0, |at, ax, axx, axxx| ≤ A1,

0 < c0 ≤ c (x, t) ≤ C0, |cx, ct| ≤ C1.

H2: The function g(x) is nondecreasing and satisfies

g ∈ C3 (0, 1) , max
x∈(0,1)

|g(x)| ≤ k1, max
x∈(0,1)

(
|g′(x)| ,

∣∣g(2)(x)
∣∣ , ∣∣g(3)(x)

∣∣) ≤ k2.

Theorem 3.1 Assume that f ∈ L2 (Q) , ϕ, ψ ∈ L2 (0, 1) and hypotheses
H1-H2 hold, then the generalized solution of problem (1.1)-(1.4) if it exists is
unique.

Proof. If we suppose that u1 and u2 are two different generalized solutions,
then the function u = u1 − u2 is a generalized solution of the problem (1.1)-
(1.4) with f = ϕ = ψ = 0. We shall prove that u = 0 in Q. Let v ∈ HT (Q)
and denote Qτ = {(x, t) ; 0 < x < 1, 0 < t ≤ τ ≤ T} . Consider the function

v(x, t) =


τ∫
t

u (x, θ) dθ, 0 ≤ t ≤ τ

0, τ ≤ t ≤ T.

Substituting v into identity (2.1) and using vt(x, t) = −u (x, t) , it follows that∫
Q

[
g′(x)

∫ 1

x

utdξ

∫ 1

x

vt (ξ, t) dξ − a2g′(x)uv (3.1)

−(4aaxg
′(x) + a2g(2))u

∫ 1

x

v (ξ, t) dξ − cg′(x)

∫ 1

x

u (ξ, t) dξ

∫ 1

x

v (ξ, t) dξ

+ (cx − 2 (aax)x)

(∫ 1

x

u (ξ, t) dξ

)(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)]
dxdt = 0

Integrating by parts yields∫ 1

0

[
g′(x)

(∫ 1

x

u (ξ, τ) dξ

)2

+ g′(x)a2 (x, 0) (v (x, 0))2 (3.2)
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+g′(x)c (x, 0)

(∫ 1

x

v (ξ, 0) dξ

)2
]
dx

=

∫
Qτ

[
2aatg

′(x) (v)2 + 2[6aaxg
(2)(x) + a2g(3) − 6

((
a2

x

)
+ aaxx

)
g′]

×
∫ 1

x

udξ

∫ 1

x

v (ξ, t) dξ + 2(4aaxg
′ − a2g(2))v

∫ 1

x

udξ

−2 (cx + 2 (3aaxx + aaxxx))

∫ 1

x

u (x, t) dξ

∫ 1

x

(g(ξ)− g(x))v (x, t) dξ

−g′(x)ct
(∫ 1

x

vdξ

)2
]
dxdt.

Applying Cauchy inequality to the the right hand side of (3.2), using condition
H1 and H2 and ε−inequality for ε = 1, we get∫ 1

0

k2

[(∫ 1

x

u (ξ, τ) dξ

)2

dx+ a2 (x, 0) (v (x, 0))2 + c (x, 0)

(∫ 1

x

v (ξ, 0) dξ

)2
]
dx

≤
∫

Qτ

[
k2(6A0A1 + A2

0) |v|
2 + [

(
6A2

1 + 12A0A1 + A2
0 + C1

)
k2 (3.3)

+(8A0A1 + C1)k1]

(∫ 1

x

v (ξ, t) dξ

)2

+[
(
6A2

1 + 24A0A1 + 2A2
0

)
k2 + (8A0A1 + C1)k1]

(∫ 1

x

udξ

)2
]
dxdt.

Thus ∫ 1

0

[(∫ 1

x

u (ξ, τ) dξ

)2

dx+ (v (x, 0))2 +

(∫ 1

x

v (ξ, 0) dξ

)2
]
dx

≤ L

∫
Qτ

[
|v(x, t)|2 +

(∫ 1

x

v (ξ, t) dξ

)2

+

(∫ 1

x

udξ

)2
]
dxdt. (3.4)

where

L = max
{
(6A0A1 + A2

0)k2,
(
6A2

1 + 12A0A1 + A2
0 + C1

)
k2 + (8A0A1 + C1)k1,(

6A2
1 + 24A0A1 + 2A2

0

)
k2 + (8A0A1 + C1)k1

}
/min

{
k2, k2a

2
0, k2c0

}
.
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Let us introduce the function w (x, t) =
∫ 1

0
u (x, θ) dθ, we see that

v (x, t) = w (x, τ)− w (x, t) , v (x, 0) = w (x, τ) ,

v2 (x, t) ≤ 2w2 (x, τ) + 2w2 (x, t) ,

consequently inequality (3.4) becomes

∫ 1

0

[(∫ 1

x

u (ξ, τ) dξ

)2

+ (1− 2Kτ)

(
w2 (x, τ) +

(∫ 1

x

w (ξ, τ) dξ

)2
)]

dx

≤ 2L

∫
Qτ

[(∫ 1

x

u (ξ, t) dξ

)2

dξ + w2 (x, t) +

(∫ 1

x

w (ξ, t)

)2
]
dxdt. (3.5)

Since τ is arbitrary, let 0 < τ <
1

2L
, then (3.5) becomes

∫ 1

0

[(∫ 1

x

u (ξ, τ) dξ

)2

+

(
w2 (x, τ) +

(∫ 1

x

w (ξ, τ) dξ

)2
)]

dx

≤ L′
∫

Qτ

[(∫ 1

x

u (ξ, t) dξ

)2

dξ + w2 (x, t) +

(∫ 1

x

w (ξ, t)

)2
]
dxdt

where L′ = 2L
(1−2Lτ)

. Applying Gronwall Lemma, it yields

∫ 1

0

[(∫ 1

x

u (ξ, τ) dξ

)2

+ w2 (x, τ) +

(∫ 1

x

w (ξ, τ) dξ

)2
]
dx ≤ 0,

hence u (x, τ) = 0, for all x ∈ (0, 1) and τ ∈
(
0, 1

2L

)
. If T ≤ 1

2L
, then u = 0 in

Q. If T ≥ 1
2L

we get ]0, T [ ⊂ ∪n=n0
n=1

(
n−1
2L
,
n

2L

)
, where n0 = [2LT ] + 1, [2LT ] is

the entire part of 2LT, then repeating the same argument for τ ∈
(

n−1
2L
, n

2L

)
,

we get u (x, τ) = 0 in Q. Thus, the uniqueness is proved.

4 Existence of generalized solution

In order to prove the existence of the generalized solution we apply Galerkin
method.

Theorem 4.1 Assume that the assumptions of Theorem 3.1 hold, then the
non-local problem (1.1)-(1.4) has a unique solution u ∈ H0 (Q)
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Proof. Let {wk (x)} be a fundamental system inH0(0, 1), such that (wk, wi) =
δk,i, then the approximate solution of the problem (1.1)-(1.4) can be written
as

u(n) =
n∑

k=1

αk (t)wk (x) . (4.1)

The approximate of the functions ϕ(x) and ψ(x) are denoted respectively by

ϕ(n) (x) =
n∑

k=1

ϕkwk (x) , ψ(n) (x) =
n∑

k=1

ψkwk (x)αk (0) = ϕk, α
′

k (0) = ψk.

(4.2)
Substituting the approximate solution in equation (1.1), multiplying both sides

by
∫ 1

x
(g(ξ)− g(x))wi(ξ)dξ, then integrating according to x on (0, 1), it yields∫ 1

0

(u
(n)
tt (x, t)− a2(x, t)u(n)

xx (x, t) + c(x, t)u(n)(x, t))×

(∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ

)
dx =

∫ 1

0

f(x, t)

(∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ

)
dx.

(4.3)
In view of (4.1), we get

n∑
k=1

α
′′

k (t) (wk (x) ,

∫ 1

x

(g(ξ)− g(x))wi (ξ) dξ)L2(0,1) +

n

+
∑
k=1

αk (t)

[
(−a2(x, t)w′′k (x) ,

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ)L2(0,1)

+(c(x, t)wk (x) ,

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ)L2(0,1)

]

=

∫ 1

0

f(x, t)

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξdx. (4.4)

Integrating by parts in L2(0, 1) the left-hand side of (4.4), we obtain

n∑
k=1

α
′′

k (t) +

[
g′(x)(

∫ 1

x

wk (ξ) dξ,

∫ 1

x

wi (ξ) dξ)L2(0,1)

]
+

n∑
k=1

αk (t) [cx − 2(aaxxx + 3aaxx)×(∫ 1

x

wk (ξ) dξ,

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ

)
L2(0,1)
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+(6aaxg
(2)(x) + a2g(3)(x)− 6

((
a2

x

)
+ aaxx

)
g′(x))(∫ 1

x

wk (ξ) dξ,

∫ 1

x

wi(ξ)dξ

)
L2(0,1)

×

(4aaxg
′ + a2g(2))

(
wk,

∫ 1

x

wi(ξ)dξ

)
L2(0,1)

+ g′a2 (wk, wi)L2(0,1)

]

=

∫ 1

0

f(x, t)

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξdx. (4.5)

Let us make the following notation:

θk,i = g′(x)(

∫ 1

x

wk (ξ) dξ,

∫ 1

x

wi(ξ)dξ)L2(0,1)

σk,i = (cx + 2 (3aaxx + aaxxx))×(∫ 1

x

wk (ξ) dξ,

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξ

)
L2(0,1)

(6aaxg
(2)(x) + a2g(3)(x)− 6

((
a2

x

)
+ aaxx

)
g′(x))

×
(∫ 1

x

wk (ξ) dξ,

∫ 1

x

wi(ξ)dξ

)
L2(0,1)

+ (4aaxg
′ + a2g(2))

(
wk,

∫ 1

x

wi(ξ)dξ

)
L2(0,1)

+ g′a2 (wk, wi)L2(0,1)

]

fi(t) =

∫ 1

0

f(x, t)

∫ 1

x

(g(ξ)− g(x))wi(ξ)dξdx,

then (4.5) becomes

n∑
k=1

α
′′

k (t) θk,i + αk (t)σk,i = fi(t)

αk (0) = ϕk; α
′

k (0) = ψk

Consequently we obtain a Cauchy system of second order linear differential
equations with smooth coefficients, so it has one and only one solution, that
for every n there exists a unique sequence u(n) that satisfies (4.3).

Now we shall prove that this sequence is convergent, for this, we will prove
that is bounded and so we can extract a subsequence that is weakly convergent,
then its limit is the desired solution of the problem (1.1)-(1.4).

Lemma 4.2 The sequence
(
u(n)
)

is bounded.
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Proof. Multiplying (4.3) by α
′
i(t) then summing with respect to i from 1

to n it yields∫ 1

0

(
u

(n)
tt (x, t)− a2(x, t)u(n)

xx (x, t) + c(x, t)u(n)(x, t)
)

×
∫ 1

x

(g(ξ)− g(x))u
(n)
t (ξ, t)dξdx

=

∫ 1

0

f(x, t)

∫ 1

x

(g(ξ)− g(x))u
(n)
t (ξ, t)dξdx (4.6)

Integrating (4.6) over t from 0 to τ and applying similar technics that have
been used to prove the uniqueness, we obtain∫ 1

0

[
1

2
g′(x)c (x, τ)

(∫ 1

x

u(n)(ξ, τ)dξ

)2

+
1

2
g′(x)a2 (x, τ)

(
u(n)(x, τ)

)2
+

1

2
g′(x)

(∫ 1

x

u
(n)
t (ξ, τ)dξ

)2
]
dx

=

∫ 1

0

[
1

2
g′(x)c (x, 0)

(∫ 1

x

ϕ(n)(ξ)dξ

)2

+
1

2
g′(x)a2 (x, 0)

(
ϕ(n)(x)

)2
+

1

2
g′(x)

(∫ 1

x

ψ(n)(ξ)dξ

)2

dx

]
+∫

Qτ

−2(a2
x + aaxx)u

(n)

∫ 1

x

(g(ξ)− g(x))u
(n)
t (ξ, t)dξ + a2g(2)u(n)

∫ 1

x

u
(n)
t (ξ, t)dξ

+g′(x)aat(u
(n))2 + cx

(∫ 1

x

u(n)(ξ, t)dξ

)(∫ 1

x

(g(ξ)− g(x))u
(n)
t (ξ, t)dξ

)
+

1

2
g′(x)ct

(∫ 1

x

u(n)(ξ, t)dξ

)2

+ f(x, t)

(∫ 1

x

(g(ξ)− g(x))u
(n)
t (ξ, t)dξ

)]
dxdt.

With the help of Cauchy inequality, we obtain∫ 1

0

k2

[(∫ 1

x

u(n)(ξ, τ)dξ

)2

+ u(n)(x, τ)2 +

(∫ 1

x

u
(n)
t (ξ, τ)dξ

)2
]
dx

≤ L̃
[∥∥ϕ(n)

∥∥2
+
∥∥ψ(n)

∥∥2
+ ‖ f ‖2

L2(Qτ )

+

∫
Qτ

C1(k1 + 1/2k2)

(∫ 1

x

u(n)(ξ, t)dξ

)2

+[k1(C1 + 2A2
1 + 2A0A1 + 1) + k2A

2
0]

(∫ 1

x

u
(n)
t (ξ, t)dξ

)2

[2k1(A0A1 + A2
1) + k2(A

2
0 + A0A1)]u

(n)(x, t)2dxdt
]
,
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where L̃ =
∼
M /

∼
m,

∼
m = min {k2, k2a

2
0, k2c0}

∼
M = max {k2, k2A

2
0, k2C0, C1(k1 + 1/2k2), k1(C1 + 2A2

1 + 2A0A1 + 1)+

k2A
2
0, 2k1(A0A1 + A2

1) + k2(A
2
0 + A0A1).}

Now applying Gronwall Lemma, we get∫ 1

0

[(∫ 1

x

u(n)(ξ, τ)dξ

)2

+ u(n)(x, τ)2 +

(∫ 1

x

u
(n)
t (ξ, τ)dξ

)2
]
dx

≤ eτL̃
(∥∥ϕ(n)

∥∥2
+
∥∥ψ(n)

∥∥2
+ ‖ f ‖2

L2(Q)

)
(4.7)

Integrating (4.7) according to τ on [0, T ] it yields

‖u‖2
H(Q) ≤ eT L̃

(∥∥ϕ(n)
∥∥2

+
∥∥ψ(n)

∥∥2
+ ‖ f ‖2

L2(Q)

)
. (4.8)

The inequality (4.8) implies the boundeness of the sequence u(n).

4.3 We have proved that the sequence
{
u(n)
}

is bounded, so we can extract

a subsequence which we denote by
{
u(nk)

}
, that is weakly convergent, then we

prove that its limit is the desired solution of the problem (1.1)-(1.4).

Lemma 4.4 The limit of the subsequence
{
u(nk)

}
is the solution of the

problem (1.1)-(1.4).

Proof. We shall prove that the limit of the subsequence
{
u(nk)

}
satisfies

the identity (2.1) for all function v =
∑n

i=1 θi(t)wi(x) ∈ HT (Q) . Since the
set Sn = {v (x, t) =

∑n
k=1 vk(t)wk(x), vk(t) ∈ C2(0, T ), vk(T ) = 0} is such that

∪∞n=1Sn is dense in HT (Q) , it suffice to prove (2.1) for v ∈ Sn.
Multiplying (4.3) by vk(t), summing according to k from 1 to n then inte-

grating over t from 0 to T , we obtain∫
Q

[
g′(x)

∫ 1

x

u
(nk)
t dξ

∫ 1

x

vt (ξ, t) dξ − a2g′(x)u(nk)v (4.9)

−(4aaxg
′(x) + a2g(2))u(nk)

∫ 1

x

v (ξ, t) dξ − cg′(x)

∫ 1

x

u(nk) (ξ, t) dξ

∫ 1

x

v (ξ, t) dξ

+ (cx − 2 (aax)x)

(∫ 1

x

u(nk) (ξ, t) dξ

)(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)]
dxdt

=

∫
Q

f(x, t)

(∫ 1

x

(g(ξ)− g(x))v (ξ, t) dξ

)
dxdt

−
∫ 1

0

g′(x)

(∫ 1

x

ψ(nk) (ξ) dξ

)(∫ 1

x

v (ξ, 0) dξ

)
dx.

Let u be the weak limit of the subsequence
{
u(nk)

}
. Letting k to infinity,

we get that the limit function u satisfies (2.1) for every vn ∈ HT (Q) , since
∪∞n=1Sn = HT (Q) and so u is a generalized solution of the problem (1.1)-(1.4).
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5 Open Problem

In this paper we have studied a one-dimensional telegraph equation with a
weighted integral condition. One can apply numerical methods like the homo-
topy analysis method (HAM), variational iteration method, ..., to the same
problem.

It will be interesting if the Galerkin method is applied to the same equation
but with more general integral conditions.
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