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Abstract

We consider the clustering problem of directional data and
specifically the choice of the number of clusters. Setting this
problem under the mixture approach, we perform a compara-
tive study of different criteria. Monte Carlo simulations are
performed taking into account the overlap degree of clusters
and the size of data.
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1 Introduction

Clustering is a key form of scientific research utilized within a variety of dif-
ferent scientific disciplines. Principally the classification method is used to
produce g different clusters of wide distinctions. It should be noted that the
optimum number of clusters g leading to the greatest separation is not known a
priori and must be computed from the data, this is an heuristic problem in the
classification topic; and this paper will be mainly concerned with this issue. In
its main usage (Mainly), Clustering supports two approaches: a geometric one
where the quality of the clustering depends on the chosen distance, and a prob-
abilistic approach which is considered as a standard approach [14]. The latter
covers the most widely used clustering methods. In this approach, data is pre-
sumed to come from a sampled mixture of g components which are modelled
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by a distribution of probability. This approach can support several situations,
depending on the parameters of the model, to obtain a best description of a
heterogeneous population considering a selected model which is in itself an-
other problem. The clustering problem can be resolved by mixture modelling
and we can, for this, consider two approaches: the Maximum Likelihood (ML)
and the Classification Maximum Likelihood (CML) approaches. The former is
based on the maximization of the Likelihood , and the latter one is based on
the maximization of the Classification (or complete data) Likelihood. These
maximizations can be performed respectively by the EM algorithm and by
the Classification EM (CEM) [9]. The model selection problem is to find the
most appropriate and concise model to express given data.

Here, we merely examine some criteria from a practical point of view and in
the context of the directional data utilizing a suitable distribution for mixture
of directional data. The von MisesFisher distributions (VMF ) are defined on
the hypersphere S(d−1) [2] and appear adapted in this context. We consider
Monte Carlo simulations and examine through numerical experiments on ”real
data” to see the validity of the proposed criteria for our main goal to estimate
the number of clusters in a mixture.

This paper is organized as follows. Section 2 is devoted to describe the
VMF mixture model. Section 3 begins with a review of the ML and CML
approaches and a description of the EM and CEM algorithms. In Section 3,
we review several criteria used in the determination of the number of clusters,
and we evaluate these criteria. Finally, the last section summarizes the main
points of this paper.

Notation Along this work, we assume that the data matrix x is a contin-
gency table, crossing, for example, n documents (rows) and d words (columns).
In this case, each document is represented by xi = (x1i , · · · , xdn) ∈ Rd, with
‖xi‖ = 1 (‖.‖ denotes the standard L2). Each value xji corresponds to the
frequency of a word j in a document i. A clustering of n documents provides
a partition z into g classes.

2 Clustering via the Von Mises-Fisher mix-

ture models

2.1 Finite mixture model

Finite mixture models underpin a variety of techniques in major areas of statis-
tics including cluster analysis; see for instance [14]. With a mixture model-
based approach clustering, it is assumed that the data to be clustered are
generated by a mixture of underlying probability distributions in which each
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component represents a different cluster. Given observations x = (x1, . . . ,xn),
let ϕk(xi;αk) be the density of an observation xi from the kth component,
where the αk’s are the corresponding parameters and let g be the number of
components in the mixture. The probability density function is

f(xi; θ) =
g∑

k=1

πkϕk(xi;αk), (1)

where πk is the probability that an observation belongs to the kth component
and θ is the vector of the unknown parameters (π1, . . . , πg;α1, . . . , αg).

Setting the clustering problem of directional data under the mixture model
approach, we assume that x is generated from a von Mises-Fisher mixture of
g components. In this case

ϕk(xi;αk) = cd(ξk) exp ξk
Tµkxi

where αk = (µk, ξk); µk is the centre, ξk is the concentration of the kth cluster

and cd(ξ) = ξ
d
2−1

(2π)
d
2 I d

2−1
(ξ)

with I d
2
(ξ) is the modified Bessel function of the 1st

type and of order d
2
: Id(ξ) = 1

2π

∫ 2π
0 eξ cos θ cos(dθ)dθ.

Note that we can consider different parsimonious models by imposing con-
straints on πk and ξk.

1. the proportions πk of clusters and the concentrations ξk are supposed not
equal, this model is noted [πk, ξk],

2. the concentrations ξk are supposed equal, this model is noted [πk, ξ],

3. the proportions πk of clusters are supposed equal, this model is noted
[π, ξk],

4. the proportions πk of clusters and the concentrations ξk are supposed
equal, this model is noted [π, ξ].

Next we focus on the general model [πk, ξk].

2.2 ML and CML approaches

The problem of clustering can be studied in the mixture model using the ML
approach. This one, by maximizing the likelihood

L(θ) =
∏
i

g∑
k=1

πkϕk(xi;αk),

has been by far the most commonly used approach to the fitting of mixture dis-
tribution and is appropriate to tackle this problem. It estimates the parameters
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of the mixture, and the partition of I is derived from these parameters using
the maximum a posteriori principle (MAP). Classical optimization techniques
such as Newton-Raphson or gradient methods can be used but, in mixture
context, the EM algorithm [10] has been successfully applied and is one of the
most widely used procedures.

2.2.1 EM and CEM Algorithms

The EM algorithm is a method for maximizing the log-likelihood L(θ) itera-
tively, using the maximization of the conditional expectation of the complete-
data log-likelihood given a previous current estimate θ(c) and the observed data
x. In mixture model, we take the complete-data to be the vector (x, z) where
the unobservable vector z is the label data; the complete-data log-likelihood
Lc(θ; x, z) noted also Lc(z; θ) is

Lc(z; θ) =
∑
i,k

zik log πkϕk(xi;αk) (2)

and its conditional expectation can be written

Q(θ, θ(c)) =
∑
i,k

s
(c)
ik log(πkϕk(xi;αk)

=
∑
i,k

s
(c)
ik log (πkcd(ξk)e

ξk
Tµkxi)

where s
(c)
ik = P (zik = 1|x, θ(c)) =

π
(c)
k
ϕk(xi;α

(c)
k

)∑g

k′=1
π

(c)

k′ ϕk′ (xi;α
(c)

k′ )
denotes the conditional

probability, given x and θ(c), that xi arises from the mixture component with
density ϕk(xi;αk). Each iteration of EM has two steps: an E-step and a M-
step. The (c + 1)st E-step finds the conditional expectation of the complete-
data log-likelihood. Note that in the mixture case this step reduces to the
computation of the conditional density of the s

(c)
ik . The (c+ 1)st M-step finds

θ(c+1) maximizing Q(θ, θ(c)).
The characteristics of the EM algorithm are well documented. It leads

in general to simple equations, has the nice property of increasing the log-
likelihood at each iteration until stationarity, and in many circumstances, it
derives sensible parameter estimates and consequently it is a popular tool to
obtain maximum likelihood estimation. The EM algorithm can be viewed as a
soft algorithm, and the partition can be derived from the parameters by using
the MAP.

Note that a hard version CEM [9] can be performed by substitutingQ(θ, θ(c))
by Lc(θ). The main modifications concern therefore the conditional maximiza-
tion of complete data log-likelihoods w.r. to z given θ. in this context, we are
not treating the estimation problem but; we are dealing with the problems of
the selection of the number of components in a mixture.
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2.2.2 The EM steps for a von Mises-Fisher mixture model

The EM algorithm,as explained previously is used to compute the maximum
likelihood (ML) estimates of all the parameters through the iterated applica-
tion of the estimation and maximization of Q(θ, θ(c)). Starting from an initial
situation θ(0), an iteration (c > 0) is defined as follows: After the Estimation

step, where the current posterior s
(c)
ik is computed. The Maximization step

compute the ML estimates θ(c) = (µ
(c)
k , π

(c)
k , ξ

(c)
k ), as following:

• π(c)
k =

∑n

i=1
s
(c)
ik

n

• µ(c)
k =

∑n

i=1
s
(c)
ik
xi∥∥∥∑n

i=1
s
(c)
ik
xi

∥∥∥
• ξ(c)k = A−1

d (

∥∥∥∑n

i=1
s
(c)
ik
xi

∥∥∥
π

(c)
k

×n
)

with Ad(ξ) =
I d

2
(ξ)

I d
2−1

(ξ)

Then, a partition z = (z1, · · · , zk) of the data can be directly derived from
the ML estimates of the mixture parameters by assigning each xi to the com-
ponent which provided the greatest posterior probability.

3 Number of components selection

The determination of the numbers of components g and m can be viewed as a
model selection problem which can be solved by different criteria: information
model selection criteria, methods based on confidence interval, and empirical
criteria [8]. In this paper we will explore some information criteria, which
are the most important and popular techniques. They consist to penalize the
models with additional parameters. These criteria split into two terms: one for
the model fitting fit, which is data likelihood or complete data likelihood, and
one for the model complexity. There is also different methods of selection of the
number of components in a mixture, in which the iterations of the algorithm
delete the empty or less condensed components or more like the hierarchical
classification, merging many clusters to one in an agglomerative way to a fixed
level of dissimilarity [11]. In the mixture modelling the stochastic version of
EM is particularly appealing to estimate the components of a mixture, in it’s
stochastic iteration, the SEM exclude the components in which the cardinal
is lower than a fixed initial number; iteratively this algorithm estimates the
number of clusters.
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3.1 SEM algorithm

The SEM algorithm is a stochastic version of EM incorporating between E
an M steps a restoration of the unknown component labels zi, i = 1, ..., n, by
drawing them at random from their current conditional distribution, starting
from an initial parameter, consisting the three steps:

• Expectation E: compute the conditional probabilities tik for the current
parameters of the mixture

• Stochastic S: assign each point at random to one of the mixture compo-
nents according to the multinomial distribution with parameters tik.

• Maximisation M : update the ML estimates of the parameters of the
mixture using the partition result of the step S.

3.2 Information criteria

Let L be the log−likelihood of observed data, Lc be the complete data log−likelihood
with the parameter θ̂ obtained by the EM algorithm, υ be the number of free
parameters in the mixture model and E =

∑
i,k sik log(sik) the entropy crite-

rion. The terms L, Lc, υ and E depend on g. In the following, we shall focus
on twelve criteria.

• Bic(g) = −2L(g) + υ lnn, proposed by Schwarz [18] and Rissanen [17]

• Aic(g) = −2L(g) + 2υ, proposed by Akaike [1]

• Aic3(g) = −2L(g) + 3υ, proposed by Bozdogan [7]

• Aic4(g) = −2L(g) + 4υ, proposed by Bozdogan [7]

• Aicc(g) = Aic(g) + 2υ(υ+1)
n−υ−1

, proposed by Hurvich and Tsai [13]

• Aicu(g) = Aicc(g)+n lnn/(n− υ − 1), proposed by McQuarrie, Schwarz
and Tsai [15]

• CAic(g) = −2L(g) + υ(1 + lnn), proposed by Bozdogan [6]

• Clc(g) = −2L(g) + 2E(g), proposed by Biernacki [4]

• IclBic(g) = Bic(g)+2E(g), proposed by Biernacki, Celeux and Govaert
[5]

• Ll(g) = −L(g) + υ
2

∑
k ln nπk

2
+ g

2
ln n

12
+ g(υ+1)

2
, proposed by Figueiredo

and Jain (2002) [12]
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• Icl(g) = −2Lc(g) + υ lnn, proposed by Biernacki, Celeux and Govaert
[5]

• Awe(g) = −2Lc(g) + 2υ(3
2

+ lnn), proposed by Banfield and Raftery [3]

3.3 Experimental conditions

In our experiments, we perform a study according to the degree of overlap of
clusters and the size of data.

1. The concept of cluster separation is difficult to visualize easily for our
model, but the degree of overlap can be measured by the true error
rate approximated by comparing the partitions simulated with those we
obtained by applying a classification step. From our numerical experi-
ments, we present only 3 situations corresponding to 3 levels of overlap
degrees: clusters well separated (≈ 5%), moderately separated (≈ 15%)
and poorly separated (≈ 23%).

To explain the different degrees of overlap, the following plots represents
six samples simulated regarding the three degrees, the first group in 2
dimensions and the second in 3 dimensions, with n = 120 , g = 3 and
different parameters (µ, k, p).

2. We selected several sizes of data 600×3, 1800×3, 6000×3, 6000×50 and
6000×50 data arising from 3- components mixture model corresponding
to the three degrees of overlap.

Before any application lets observe; the model complexity for most of the
criteria exposed previously depend directly on the number of the unknown free
parameters in the clustering model. Such number considering a model of von
Mises-Fisher with the unknown parameters (µk, πk, ξk), is: υ = g(d+2)−1, so
if g = 2, · · · , 5, a quick calculus give us an idea about this quantity and about
the log(n), in the following table:

Table 1: number of free parameters for g clusters.
g/d 3 50 100 n ln(n)
2 9 103 203 600 6.3969
3 14 155 305 1800 7.4955
4 19 207 407 3000 8.0063
5 24 259 509 6000 8.6995

Furthermore, let us compute the penalty terms for all the criteria, where
the term is independent of the iterations of the EM algorithm (table2).
According to the increasing values of g all the criteria values increase uniformly.
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Figure 1: Sample1: 5%
degrees of overlap, d = 2
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Figure 2: Sample2: 15%
degrees of overlap, d = 2
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Figure 3: Sample3: 25%
degrees of overlap, d = 2
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Figure 4: Sample4: 5%
degrees of overlap, d = 3
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Figure 5: Sample5: 15%
degrees of overlap, d = 3

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 6: Sample6: 25%
degrees of overlap, d = 3
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Aic, Aic3, Aic4 and Aicc are independent of the number of the lines n, for these
criteria the penalty term increases modestly when the number of the columns
d increases. The Bic, Icl − Bic, Icl and Caic penalty term is a composition
of both numbers n and d, and it increases according to both of them. By the
same way the Awe’s penalty increases, but quicker. It’s clear that the quality
of any of the above criteria is affected directly by this term.

Now, to evaluate the EM algorithm and the previous criteria, many ap-
plications on simulated data was realized. For each θ leading the degree of
overlap, we generated 20 samples. For each sample and to avoid local optima
in the generated estimation process, the EM(g) algorithm (g = 2, . . . , 5) re-
garding the general model [πk, ξk], is repeated 20 times starting from the best
partition obtained by the spherical kmeans [2] which is a CEM applied with
the model [π, ξ]. From the best solution,

1. we compute the percent of documents misclassified by comparing the true
partition and the obtained partition with the same number of clusters,

2. we compute all criteria previously cited in function of different values of
g,

3. we count the number of times on 20 that each criterion detects the orig-
inal number of clusters fit, overestimates it over-fit or underestimates it
under-fit. In table 1 are reported all results obtained by all criteria.

From these experiments, the main points arising are the following.

• The EM algorithm gives good results by comparing the true partition
and the obtained one by EM(3).

• When the clusters are well or moderately separated Aic3, Aic4, Aicu and
Bic are the more efficient for the studied sizes.

• When the clusters are poorly separated, the quality of these criteria
increases with the size of the data n and when n >> d.

• Moreover note that Aic3 and Aicu outperform Bic when the number of
columns increases and remain interesting in the most situations. In fact,
Bic seems very sensitive to the dimension, it underestimates the number
of clusters.

In these first experiments, we can consider that Aic3 and Aicu are the best
criteria. Note that Aic3 is also interesting for the Bernoulli mixture model
for the binary data [16]. Nevertheless, we have noted that their performances
decrease when we are in the high dimension. Then we illustrate the behavior
of all criteria by using a well known set of data known as Classic3 as a real data
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application. This is a set of documents from three well separated sources. Clas-
sic3 contains 3893 documents (vectors) with a total of 4303 features (words).
The data matrix consists of 1400 Cranfield documents from aeronautical sys-
tem papers, 1033 from Medline documents obtained from medical journals,
and 1460 Cisi documents obtained from information retrieval papers. Each
vector was normalized in order to be used as a unit vector.In order to select a
number of clusters in g = 2, . . . , 5, we have computed the same criteria as pre-
viously, we applied the EM(g) algorithm regarding the general model [πk, ξk]
and we obtained the following results:

• Bic, Caic, Icl-Bic, Icl overestimate the number of clusters and give 4
clusters.

• Aic, Aic3, Aic4, Aicc, Clc overestimate the number of clusters and give
5 clusters.

• Aicu, Ll, Awe underestimate the number of clusters and give 2 clusters.

4 Conclusion

Setting the clustering of directional data in the mixture approach context,
we have performed some experiments in order to evaluate the EM algorithm
and to assess the number of clusters. Different information criteria have been
tested on different sizes of data according different degree of overlap. We have
observed that some of them such as Aic3, Aic, Aicu and Bic are interesting.
Moreover we have noted that their performance increases on the size of data
and Aic3 and Aicu appear as the best.

5 Open Problem

In future work, it will be interesting :
1) to take into account the high dimension in these criteria.
2) to tackle simultaneously the problem of assessing of the number of clus-

ters combined to the choice of the parsimonious models [πk, ξ], [πk, ξ] and [π, ξ].
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Table 2: Values of the penalty term for some information criteria.
Size Clusters Bic Aic Aic3 Aic4 Aicc Aicu Caic Awe

Icl −Bic
Icl

600× 3 2 57.572 18 27 36 18.033 28.118 66.572 142.144
3 89.557 28 42 56 28.051 43.241 103.557 221.114
4 121.541 38 57 76 38.068 58.409 140.541 300.083
5 153.526 48 72 96 48.086 73.622 177.526 379.052

1800× 3 2 67.459 18 27 36 18.011 28.039 76.459 161.919
3 104.937 28 42 56 28.016 43.079 118.937 251.875
4 142.415 38 57 76 38.022 58.134 161.415 341.830
5 179.893 48 72 96 48.028 73.203 203.893 431.786

6000× 3 2 78.295 18 27 36 18.003 28.011 87.295 183.591
3 121.793 28 42 56 28.005 43.023 135.793 285.586
4 165.290 38 57 76 38.006 58.040 184.290 387.581
5 208.788 48 72 96 48.008 73.060 232.788 489.576

3000× 50 2 824.655 206 309 412 206.071 311.917 927.655 1958.311
3 1240.986 310 465 620 310.109 470.312 1395.986 2946.973
4 1657.318 414 621 828 414.148 629.711 1864.318 3935.636
5 2073.649 518 777 1036 518.189 790.152 2332.649 4924.298

6000× 50 2 896.050 206 309 412 206.035 310.947 999.050 2101.100
3 1348.424 310 465 620 310.053 468.117 1503.424 3161.849
4 1800.799 414 621 828 414.071 625.762 2007.799 4222.599
5 2253.174 518 777 1036 518.090 783.892 2512.174 5283.348

6000× 100 2 1766.001 406 609 812 406.070 613.619 1969.001 4141.002
3 2653.351 610 915 1220 610.107 924.186 2958.351 6221.703
4 3540.702 814 1221 1628 814.145 1236.680 3947.702 8302.405
5 4428.053 1018 1527 2036 1018.185 1551.173 4937.053 10383.106

Table 3: Evaluation of EM and all information criteria for the model [πk, ξk].
For each criterion, the numbers of times on 20 that a criterion detects or not
the good number of clusters (a).

size degree EM(3) fit Bic Aic Aic3 Aic4 Aicc Aicu CAic Clc Icl− Bic Ll Icl Awe
600× 3 4.88% 5.17% under-fit 0 0 0 0 0 0 0 0 0 0 0 0

fit 20 15 19 20 15 19 20 15 20 20 20 20
over-fit 0 5 1 0 5 1 0 5 0 0 0 0

1800× 3 5.16% 4.83% under-fit 0 0 0 0 0 0 0 0 0 0 0 0
fit 20 18 19 20 18 19 20 20 20 20 20 20

over-fit 0 2 1 0 2 1 0 0 0 0 0 0
3000× 50 4.74% 6.85% under-fit 0 0 0 0 0 0 0 0 1 7 0 4

fit 20 1 20 20 1 20 20 6 19 13 20 16
over-fit 0 19 0 0 19 0 0 14 0 0 0 0

600× 3 14.63% 16.33% under-fit 0 0 0 0 0 0 0 9 16 7 7 16
fit 20 17 20 20 17 20 20 9 4 13 13 4

over-fit 0 3 0 0 3 0 0 2 0 0 0 0
1800× 3 15.10% 15.83% under-fit 0 0 0 0 0 0 0 14 18 0 2 7

fit 20 19 20 20 19 20 20 6 2 20 18 13
over-fit 0 1 0 0 1 0 0 0 0 0 0 0

3000× 50 13.68% 14.10% under-fit 0 0 0 0 0 0 0 0 3 0 0 20
fit 20 10 20 20 10 20 20 18 17 20 20 0

over-fit 0 10 0 0 10 0 0 2 0 0 0 0
6000× 100 15.11% 18.35% under-fit 0 0 0 0 0 0 4 20 20 20 20 20

fit 20 0 20 20 0 20 16 0 0 0 0 0
over-fit 0 20 0 0 20 0 0 0 0 0 0 0
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Table 4: Evaluation of EM and all information criteria for the model [πk, ξk].
For each criterion, the numbers of times on 20 that a criterion detects or not
the good number of clusters (b).

size degree EM(3) fit Bic Aic Aic3 Aic4 Aicc Aicu CAic Clc Icl− Bic Ll Icl Awe
600× 3 24.96% 29.17% under-fit 20 15 17 20 15 18 20 20 20 20 20 20

fit 0 3 3 0 3 2 0 0 0 0 0 0
over-fit 0 2 0 0 2 0 0 0 0 0 0 0

1800× 3 25.19% 35.94% under-fit 20 12 17 19 12 17 20 20 20 20 20 20
fit 0 8 3 1 8 3 0 0 0 0 0 0

over-fit 0 0 0 0 0 0 0 0 0 0 0 0
6000× 3 27.49% 30.95% under-fit 0 0 0 0 0 0 0 20 20 8 20 20

fit 20 20 20 20 20 20 20 0 0 12 0 0
over-fit 0 0 0 0 0 0 0 0 0 0 0 0

3000× 50 24.75% 32.26% under-fit 18 0 0 0 0 0 20 20 20 20 20 20
fit 2 8 20 20 8 20 0 0 0 0 0 0

over-fit 0 12 0 0 12 0 0 0 0 0 0 0
6000× 50 25.61% 30.17% under-fit 20 0 1 16 0 1 20 20 20 20 20 20

fit 0 11 19 4 11 19 0 0 0 0 0 0
over-fit 0 9 0 0 9 0 0 0 0 0 0 0

6000× 100 26.74% 42.91% under-fit 20 8 20 20 8 20 20 19 20 20 20 20
fit 0 3 0 0 3 0 0 1 0 0 0 0

over-fit 0 9 0 0 9 0 0 0 0 0 0 0


