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Abstract

In this paper, we give a positive answer for an open problem
posed by Räıssouli about a new mean defined in terms of the
parameterized logarithmic mean, [1].
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1 Introduction

The following

L(a, b) =
b− a

log b− log a
, a, b > 0, a 6= b, L(a, a) = a (1)

and,

I(a, b) =
1

e

(
bb

aa

) 1
b−a

, a, b > 0, a 6= b, I(a, a) = a (2)

are known in the literature as the Logarithmic mean and Identric mean, re-
spectively. In [1], the next mean has been introduced

E(a, b) =

1∫
0

Lt(a, b)dt, a, b > 0, (3)
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where

Lt(a, b) =
∞∏
n=1

(
(1− t)a

1
2n + tb

1
2n

)
, a, b > 0, a 6= b, t ∈ [0, 1], (4)

stands for the parameterized logarithmic mean [1].

We recall that a parameterized mean mα(a, b), α ∈ [0, 1], is a binary map
between positive real numbers a, b satisfying:

• mα(a, a) = a for a > 0, α ∈ [0, 1];

• mα(ta, tb) = tmα(a, b) for a, b, t > 0, α ∈ [0, 1];

• mα(a, b) is increasing in a (and in b), for each α ∈ [0, 1];

• mα(a, b) = m1−α(b, a) for α ∈ [0, 1], a, b > 0;

• m 1
2
(a, b) = m(a, b) for a, b > 0 where m(a, b) is a mean.

For some other details about parameterized means, see [1] and the related
references cited there in.

The next open problem has been stated by M. Räıssouli in [1].

Open Problem. Prove or disprove that the means E and I are different.
We conjecture that E interpolates L and I, i. e. L < E < I,

As already pointed before, our aim in this paper is to give a positive answer
for the above problem.

2 Main results

The proof of our result will be based on the Hermite-Hadamard Inequality and
Lemma 2.2 which we will state below.
First, we recall the Hermite-Hadamard Inequality [2]

Theorem 2.1 If f : [a, b]→ R is a convex function, then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

If f is strictly convex then the above inequalities are strict.
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Second, we prove the next lemma.

Lemma 2.2 Let gs(t) =
∞∏
n=1

(
(1− t) + ts

1
2n

)
for t ∈ [0, 1], s ∈ (0, 1). Then

gs(t) is a strict convex function on [0, 1].

Proof. From

gs(t) = e

∞∑
n=1

ln

(
1−t+ts

1
2n

)

we have

g′s(t) = gs(t)
∞∑
n=1

s
1
2n − 1

1− t+ ts
1
2n
,

g′′s (t) = gs(t)

( ∞∑
n=1

s
1
2n − 1

1− t+ ts
1
2n

)2

−
∞∑
n=1

(
s

1
2n − 1

)2
(

1− t+ ts
1
2n

)2
 .

Because g′′s (t) > 0, t ∈ [0, 1] we get gs(t) is a strict convex function in the
argument t for fixed s.

Now we are in position to state our main result.

Theorem 2.3 Let a, b > 0, a 6= b. With the above, the next double inequality
holds

L(a, b) < E(a, b) < I(a, b). (5)

Proof. We note that the inequality L(a, b) < E(a, b) was proved in [1] (see
Proposition 3.1, p. 867). By using Hermite-Hadamard Inequality (Theorem
2.1) a more simple proof can be obtained. Really, we have

1∫
0

gs(t)dt > gs

(
1

2

)
= L(1, s).

By the homogeneity of E and L the inequality L(a, b) < E(a, b) follows.

Now we show the inequality E(a, b) < I(a, b). The right inequality in (5)
can be rewritten as

1∫
0

∞∏
n=1

(
(1− t)a

1
2n + tb

1
2n

)
dt <

1

e

(
bb

aa

) 1
b−a

. (6)
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Since E and I are homogeneous means we can, without loss the generality,
assume that 0 < b < a. Let us set s = b/a, then 0 < s < 1. Inequality (6) is
then reduced to

1∫
0

∞∏
n=1

(
1− t+ ts

1
2n

)
dt =

1∫
0

gs(t)dt < e
s ln s
s−1
−1.

Denote

F (s) = e
s ln s
s−1
−1 −

1∫
0

∞∏
n=1

(
1− t+ ts

1
2n

)
dt.

If we show F (s) > 0 for 0 < s < 1, then the proof will be complete. Lemma
2.2 and Hermite-Hadamard Inequality (Theorem 2.1.) imply

1∫
0

gs(t)dt =

1
2∫

0

gs(t)dt+

1∫
1
2

gs(t)dt <
1

2

(
1 + s−1

ln s

2

)
+

1

2

( s−1
ln s

+ s

2

)
=

1 + s

4
+
s− 1

2 ln s
,

where we used gs(1/2) = (s− 1)/ ln s and L(a, b) =
∞∏
n=1

a1/2
n
+b1/2

n

2
, see [1].

Because

F (s) > e
s ln s
s−1
−1 −

(
1 + s

4
+
s− 1

2 ln s

)
,

it suffices to show that

ϕ(s) =
s ln s

s− 1
− 1− ln

(
1 + s

4
+
s− 1

2 ln s

)
> 0 for 0 < s < 1.

Simple computation gives

ϕ(1) = 0 and ϕ′(s) =
s− ln s− 1

(s− 1)2
− s ln2 s+ 2s ln s− 2s+ 2

s ln s(ln s+ s ln s+ 2s− 2)

for 0 < s < 1.

If we show that ϕ′(s) < 0, the proof will be complete.
Denote v(s) = ln s+s ln s+2s−2. From v(1) = 0, v′(s) = 1

s
+ln s+3, v′(1) = 4,

v′′(s) = −1+s
s2

< 0 we have v(s) < 0. It implies ϕ′(s) < 0 is equivalent to

ϕϕ(s) = ln3 s− 2(s− 1)3

s(1 + s)
> 0
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and to

ϕϕϕ(s) = ln s+
3
√

2(1− s)
3
√
s(1 + s)

> 0.

Because ϕϕϕ(1) = 0 it suffices to show that ϕϕϕ′(s) < 0. Simple computation
gives

ϕϕϕ′(s) =
1

s
+

3
√

2

(
− 1

3
√
s(+s)

− 1− s
3

(
1

s 3
√
s(1 + s)

+
1

(1 + s) 3
√
s(1 + s)

))
.

ϕϕϕ′(s) < 0 is equivalent to

(1 + s) 3
√
s(1 + s) <

3
√

2

(
s(1 + s) +

(1− s)(1 + 2s)

3

)
.

It can be rewriting as

27s(1 + s)4 < 2(s2 + 4s+ 1)3.

Some computation gives that this inequality is

2(1 + s)6 − 15s(1 + s)4 + 24s2(1 + s)2 + 16s3 > 0.

This can be rewriting as

vv(s) = 2(1+s)6−15(1+s)5+39(1+s)4−32(1+s)3−24(1+s)2+48(1+s)−16 > 0

for s ∈ (0, 1).
But this is evident because of

vv(s) = 2(u− 2)4(u+ 1)

(
u− 1

2

)
= 2(s− 1)4(s+ 2)

(
s+

1

2

)
, u = 1 + s.

The proof is complete.
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