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Abstract

The notion of pseudo-annulets is introduced in Stone lat-
tices and characterized in terms of prime filters. Two opera-
tor α and β are introduced and obtained that their composition
β ◦α is a closure operator on the class of all filters of a Stone
lattice. A congruence θ is introduced on a Stone lattice L and
proved that the quotient lattice L/θ is a Boolean algebra.
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1 Introduction

The theory of pseudo-complements was introduced and extensively studied
in semi-lattices and particularly in distributive lattices by Orrin Frink [4] and
Garret Birkhoff [2]. Later the problem of characterizing the class of Stone
lattices has been studied by several authors like Raymond Balbes [1], Orrin
Frink [4], George Gratzer [5] etc.

In this paper, the concept of pseudo-annulets is introduced in Stone lattices
and proved that the class A+(L) of all pseudo-annulets of a Stone lattice L
forms a complete Boolean algebra. An operations α is defined on the Stone
lattice L and proved that, for any filter F of L, α(F ) is an ideal in the lattice
A+(L). For any prime filter P of a Stone lattice, we define a set `(P ) = {x ∈
L | x∗ /∈ P } and proved that a pseudo-annulet (a)+ is equal to the intersection
of all `(P ) where a ∈ P . A Glivenko type congruence relation θ is introduced
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on a Stone lattice in terms of pseudo-annulets. Finally, it is proved that the
quotient lattice L/θ is a Boolean algebra.

2 Preliminaries

The reader is refereed to [2] for the notions and notations. However, some
of the preliminary definitions and results are presented for the ready reference
of the reader. Throughout the rest of this note L stands for a Stone lattice
(L,∨,∧,∗ , 0, 1), unless otherwise mentioned.

Definition 2.1 [2] For any element a of a distributive lattice L, the pseudo-
complement a∗ of a is an element satisfying the following property for all x ∈ L:

a ∧ x = 0⇔ a∗ ∧ x = x⇔ x ≤ a∗

A distributive lattice L in which every element has a pseudo-complement is
called a pseudo-complemented distributive lattice.

Theorem 2.2 [2] For any two elements a, b of a pseudo-complemented dis-
tributive lattice, we have the following:

(1) 0∗∗ = 0

(2) a ∧ a∗ = 0

(3) a ≤ b implies b∗ ≤ a∗

(4) a ≤ a∗∗

(5) a∗∗∗ = a∗

(6) (a ∨ b)∗ = a∗ ∧ b∗

(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

An element x of a pseudo-complemented lattice L is called dense if x∗ = 0 and
the set D(L) of all dense element of L forms a filter of L.

Theorem 2.3 [4] Let F be a filter and I an ideal of a distributive lattice L
such that F ∩ I = ∅. Then there exists a prime filter P of L such that F ⊆ P
and P ∩ I = ∅.

Definition 2.4 [2] A pseudo-complemented distributive lattice L is called a
Stone lattice if, for all x ∈ L, it satisfies the property: x∗ ∨ x∗∗ = 1.

Theorem 2.5 [2] The following conditions are equivalent in a pseudo-complemented
distributive lattice L.

(1) L is a Stone lattice

(2) SL = {x∗ | x ∈ L} is a sublattice of L

(2) (x ∧ y)∗ = x∗ ∨ y∗

(3) (x ∨ y)∗∗ = x∗∗ ∨ y∗∗
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A binary relation θ on a Stone lattice L is a Glivenko type congruence if it
satisfies the following properties.

(i). (x, y) ∈ θ implies (x ∧ c, y ∧ c) ∈ θ, (x ∨ c, y ∨ c) ∈ θ for any c ∈ L.
(ii). (x, y) ∈ θ if and only if x∗ = y∗ for all x, y ∈ L.

3 Main results

In this section, the concept of pseudo-annulets is introduced in a Stone
lattice. Some operations are introduced on Stone lattices and the lattice of
pseudo-annulets. A Glivenko type congruence is introduced on a Stone lattice
and proved that the quotient lattice is a Boolean algebra.

Definition 3.1 For any subset A of a Stone lattice L, define the set A+ as
follows: A+ = {x ∈ L | x∗ ∧ a = 0 for all a ∈ A}.

If A = {a}, then for brevity we denote ({a})+ by (a)+. Then it can be easily
observed that (0)+ = L and L+ = (1)+ = D.

Lemma 3.2 For any subset A of a Stone lattice L, A+ is a filter of L.

Proof. Clearly 1 ∈ A+. Let x, y ∈ A+. Then x∗ ∧ s = 0 and y∗ ∧ t = 0 for all
s, t ∈ A. Now for any a ∈ A, (x∧ y)∗ ∧ a = (x∗ ∨ y∗)∧ a = (x∗ ∧ a)∨ (y∗ ∧ a) =
0 ∨ 0 = 0. Hence x ∧ y ∈ A+. Let x ∈ A+ and x ≤ y. Then for any
c ∈ L, y∗ ∧ c ≤ x∗ ∧ c = 0. Hence y ∈ A+. Therefore A+ is a filter of L.

Proposition 3.3 Let A and B be two subsets of a Stone lattice L. Then the
following conditions hold.

(1) A+ =
⋂
a∈A

(a)+

(2) A ⊆ B ⇒ B+ ⊆ A+

(3) A ⊆ A+

(4) A++ = A+

(5) For any two filters F,G of L, (F ∨G)+ = F+ ∩G+

Proof. (1). It is clear.

(2). Suppose A ⊆ B. Let x ∈ B+. Then x∗ ∧ b = 0 for all b ∈ B. Hence
x∗ ∧ a = 0 for all a ∈ A. Hence x ∈ A+. Therefore it concludes B+ ⊆ A+.

(3). Let x ∈ A. Then x ∧ x∗ = 0. Hence it yields x ∈ A+. Therefore A ⊆ A+.

(4). By (3), we get A++ ⊆ A+. Also A+ ⊆ (A+)+. Therefore A++ = A+.

(5). Clearly (F ∨G)+ ⊆ F+∩G+. Conversely, let x ∈ F+∩G+. Let c ∈ F ∨G.
Then c = f ∧ g for some f ∈ F, g ∈ G. Now x∗ ∧ c = x∗ ∧ (f ∧ g) = 0 ∧ g = 0.
Hence x ∈ (F ∨ G)+. Therefore (F ∨ G)+ = F+ ∩ G+. Some properties of
pseudo-annulets can be observed in the following Lemma.
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Lemma 3.4 For any a, b ∈ L, we have the following:

(1) a ∈ (a)+

(2) [a) ⊆ (a)+

(3) (a)++ = (a)+

(4) a ≤ b implies (b)+ ⊆ (a)+

(5) a ∈ (b)+ implies (a)+ ⊆ (b)+

(6) (a)+ = L if and only if a = 0

(7) a ∧ b = 0 implies (a)+ ∨ (b)+ = L

Proof. (1). It is clear.

(2). From (1), it is clear.

(3). It is clear by the above Proposition 3.3.

(4). Let a ≤ b. Let x ∈ (b)+. Then x∗ ∧ a ≤ x∗ ∧ b = 0. Therefore x ∈ (a)+.

(5). Suppose a ∈ (b)+. Then a∗ ∧ b = 0. Let t ∈ (a)+. Then t∗ ∧ a = 0. Hence
t∗ ≤ a∗. Thus t∗ ∧ b ≤ a∗ ∧ b = 0. Hence t ∈ (b)+. Therefore (a)+ ⊆ (b)+.

(6). Suppose (a)+ = L. Then we get 0 ∈ (a)+. Hence it yields that a = 1∧a =
0∗ ∧ a = 0. Converse is clear.

(7). Let a, b ∈ L be such that a∧ b = 0. Suppose (a)+ ∨ (b)+ 6= L. Then there
exists a maximal filter M such that (a)+ ∨ (b)+ ⊆ M . Hence (a)+ ⊆ M and
(b)+ ⊆ M . Now (a)+ ⊆ M implies a ∈ (a)+ ⊆ M . Hence a∗ /∈ M . Similarly,
we can get b∗ /∈ M . Since M is a prime, we get 1 = (a ∧ b)∗ = a∗ ∨ b∗ /∈ M ,
which is a contradiction. Therefore (a)+ ∨ (b)+ = L.

Let us denote the class of all pseudo-annulets of L by A+(L). Then in the
following, we prove that A+(L) is a complete Boolean algebra.

Theorem 3.5 For any Stone lattice L,A+(L) is a Boolean algebra.

Proof. Let (a)+, (b)+ ∈ A+(L). We first prove the existence of infimum
and suprimum for (a)+ and (b)+ in A+(L). Clearly (a ∨ b)+ ⊆ (a)+ ∩ (b)+.
Conversely let x ∈ (a)+ ∩ (b)+. Then x∗ ∧ (a ∨ b) = (x∗ ∧ a) ∨ (x∗ ∧ b) =
0 ∨ 0 = 1. Hence x ∈ (a ∨ b)+. Therefore (a)+ ∩ (b)+ = (a ∨ b)+. Again,
clearly (a)+ ∨ (b)+ ⊆ (a ∧ b)+. Let x ∈ (a ∧ b)+. Then (x∗ ∧ a) ∧ (x∗ ∧ b) =
x∗ ∧ a ∧ b = 0. Hence by Lemma 3.4(7), we get (x∗ ∧ a)+ ∨ (x∗ ∧ b)+ = L.
Thus x ∈ L = (x∗ ∧ a)+ ∨ (x∗ ∧ b)+. Hence x = r ∧ s for some r ∈ (x∗ ∧ a)+

and s ∈ (x∗ ∧ b)+. Now

r ∈ (x∗ ∧ a)+ ⇒ r∗ ∧ x∗ ∧ a = 0

⇒ (r ∨ x)∗ ∧ a = 0

⇒ r ∨ x ∈ (a)+
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Similarly, we can get s ∨ x ∈ (b)+. Hence

x = x ∨ x
= x ∨ (r ∧ s)
= (x ∨ r) ∧ (x ∨ s) ∈ (a)+ ∨ (b)+

Hence (a ∧ b)+ ⊆ (a)+ ∨ (b)+. Therefore (a)+ ∨ (b)+ = (a ∧ b)+. Therefore
〈A+(L),∧,∨〉 forms a distributive lattice with greatest element (0)+ and the
least element D. Moreover A+(L) is a Boolean algebra where the complement
of each (x)+, x ∈ L is precisely (x∗)+.

We now introduce two operation α and β in the following.

Definition 3.6 For any filter F of L, define

α(F ) = {(x)+ | x ∈ F}

Definition 3.7 For any ideal I of A+(L), define

β(I) = {x ∈ L | (x)+ ∈ I}

We first prove some basic properties of the above operations α and β.

Lemma 3.8 For any Stone lattice L, we have the following:

(1). For any filter F of L, α(F ) is an ideal in A+(L)
(2). for any ideal I of A+(L), β(I) is a filter in L
(3). α and β are isotones

Proof. (1). Let F be filter of L. Since 1 ∈ F , we get (1)+ ∈ α(F ). Let
(x)+, (y)+ ∈ α(F ). Then (x)+ = (a)+ and (y)+ = (b)+ for some a, b ∈ F .
Hence (x)+ ∨ (y)+ = (a)+ ∨ (b)+ = (a ∧ b)+ ∈ α(F ), because of a ∧ b ∈ F .
Again, let (x)+ ∈ α(F ) and (r)+ ∈ (A)+(L). Then it yields (x)+ = (a)+ for
some a ∈ F . Now we get that (x)+ ∩ (r)+ = (a)+ ∩ (r)+ = (a ∨ r)+ ∈ α(F ),
because of a ∨ r ∈ F . Therefore α(F ) is an ideal in A+(L).

(2). Let I be an ideal of A+(L). Since (1)+ is the smallest element of A+(L)
and I is an ideal of A+(L), we get (1)+ ∈ I. Hence 1 ∈ β(I). Let x, y ∈ β(I).
Then we get (x)+, (y)+ ∈ I. Since I is an ideal, we get (x∧y)+ = (x)+∨(y)+ ∈
I. Hence x ∧ y ∈ β(I). Again, let x ∈ β(I) and r ∈ L. Then we get (x)+ ∈ I
and (r)+ ∈ A+(L). Since I is an ideal, we get (x ∨ r)+ = (x)+ ∩ (r)+ ∈ I.
Hence x ∨ r ∈ β(I). Therefore it concludes that β(I) is a filter of L.

(3). Suppose F,G are two filters of L such that F ⊆ G. Let (x)+ ∈ α(F ).
Then we get (x)+ = (a)+ for some a ∈ F ⊆ G. Hence it yields (x)+ ∈ α(G).
Therefore α(F ) ⊆ α(G). Similarly, we can get β(F ) ⊆ β(G).

In the following, we prove that the operation β ◦ α is a closure operator.
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Theorem 3.9 Let L be a Stone lattice and F a filter of L. Then the map
F −→ β ◦ α(F ) is a closure operator. That is:

(i). F ⊆ β ◦ α(F )

(ii). β ◦ α [ β ◦ α(F ) ] = β ◦ α(F )
(iii). F ⊆ G ⇒ β ◦ α(F ) ⊆ β ◦ α(G) for any two filters F,G of L

Proof. (i). Let x ∈ F . Then we get that (x)+ ∈ α(F ). Since α(F ) is an ideal
in A+(L), it yields that x ∈ β ◦ α(F ). Therefore F ⊆ β ◦ α(F ).

(ii). Since β ◦ α(F ) is a filter in L, from the condition (i) of this Theorem, we
get that β ◦ α(F ) ⊆ β ◦ α [ β ◦ α(F ) ]. Conversely, let x ∈ β ◦ α [ β ◦ α(F ) ].
Then (x)+ ∈ α [ β ◦ α(F ) ]. Then (x)+ = (y)+ for some y ∈ β ◦ α(F ). Hence
β ◦ α [ β ◦ α(F ) ] ⊆ β ◦ α(F ). Therefore β ◦ α [ β ◦ α(F ) ] = β ◦ α(F ).

(iii). Suppose F ⊆ G. Let (x)+ ∈ α(F ). Then (x)+ = (y)+ for some y ∈ F .
So (x)+ = (y)+ for some y ∈ G. Now y ∈ G implies (y)+ ∈ α(G). Hence
(x)∗ ∈ α(G). Therefore x ∈ β ◦ α(G). Hence β ◦ α(F ) ⊆ β ◦ α(G).

Definition 3.10 For any prime filter M of L, define

`(P ) = {x ∈ L | x∗ /∈ P}

Proposition 3.11 For any prime filter P of L, `(P ) is a filter of L such that
P ⊆ `(P ).

Proof. Assume that P is a prime filter of L. Clearly 1 ∈ `(P ). Let x, y ∈ `(P ).
Then x∗ /∈ P and y∗ /∈ P . Since P is a prime filter, we get (x∧y)∗ = x∗∨y∗ /∈ P .
Hence it yield that x∧y ∈ `(P ). Let x ∈ `(P ) and r ∈ L. Then we get x∗ /∈ P .
Hence (x∨ r)∗ /∈ P , otherwise x∗ ∈ P . Thus x∨ r ∈ `(P ). Therefore `(P ) is a
filter of L. Let x ∈ P . Then x∗ /∈ P , otherwise we get 0 = x ∧ x∗ ∈ P . Hence
x ∈ `(P ). Therefore P ⊆ `(P ).

Let us denote the class of all prime filters of L by ℘ and ℘a = {P ∈ ℘ | a ∈
P}. Then we have the following:

Theorem 3.12 For any a ∈ L, (a)+ =
⋂

P∈℘a

`(P )

Proof. Let F0 =
⋂

P∈℘a

`(P ). Let x ∈ (a)+ and P ∈ ℘a. Then x∗ ∧ a = 0.

If x∗ ∈ P , then 0 = x∗ ∧ a ∈ P , which is a contradiction. Hence we get
x∗ /∈ P . Thus x ∈ `(P ). This is true for all P ∈ ℘a. Hence it yields that
(a)+ ⊆ F0. Conversely, let x ∈ F0. Then x ∈ `(P ) for all P ∈ ℘a. Suppose
x∗ ∧ a 6= 0. Then there exists a maximal filter M0 of L such that x∗ ∧ a ∈M0.
Hence x∗ ∈ M0 and a ∈ M0. Since M0 is a prime filter and a ∈ M0, by
our assumption x ∈ `(M0), which implies that x∗ /∈ M0, which is a contradic-
tion. Hence x∗∧a = 0. Thus x ∈ (a)+. Hence F0 ⊆ (a)+. Therefore (a)+ = F0.
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Corollary 3.13 Let P ∈ ℘. If a ∈ P , then (a)+ ⊆ `(P ).

We now introduce a congruence on L in terms of pseudo-annulets.

Proposition 3.14 For any x, y ∈ L, define a relation θ on L as follows:

(x, y) ∈ θ if and only if (x)+ = (y)+

Then θ is a congruence on L.

Proof. Clearly θ is an equivalence relation on L. Let (a, b) ∈ θ. Then we
get (a)+ = (b)+. Now for any c ∈ L, (a ∧ c)+ = (a)+ t (c)+ = (b)+ t (c)+ =
(b ∧ c)+. Also (a ∨ b)+ = (a)+ ∩ (c)+ = (b)+ ∩ (c)+ = (b ∨ c)+. Hence
(a ∧ c, b ∧ c), (a ∨ c, b ∨ c) ∈ θ. Therefore θ is a congruence on L.

It is a well known fact that the quotient algebra L/θ = {θ(x) | x ∈ L}, where
θ(x) is a congruence class of x with respect to θ, is a distributive lattice with
respect to the operations given by

θ(x) ∩ θ(y) = θ(x ∧ y) and θ(x) ∨ θ(y) = θ(x ∨ y)

The bounds of the above lattice L/θ are given in the following lemma.

Theorem 3.15 Let θ be the congruence defined above on L. Then L/θ is a
Boolean algebra.

Proof. Clearly {0} is the smallest congruence class of L/θ. We now show
that D is the unit congruence class of L/θ. Let x, y ∈ D. Then x∗ = y∗. Let
t ∈ (x)+. Then t∗ ∧ x = 0. Hence t∗ ≤ x∗ = y∗. Thus t∗ ∧ y ≤ y∗ ∧ y = 0.
Therefore t ∈ (y)+. Thus (x)+ ⊆ (y)+. Similarly, we can get (y)+ ⊆ (x)+.
Therefore (x, y) ∈ θ. Thus D is a congruence class of L/θ. Now, let a ∈ D and
x ∈ L. Since D is a filter, we get a∨x ∈ D. Hence θ(x)∨θ(a) = θ(x∨a) = D.
Therefore D is the unit congruence class of L/θ. Let x ∈ L. Then clearly
θ(x) ∩ θ(x∗) = θ(x ∧ x∗) = θ(0) = {0}. Also θ(x) ∨ θ(x∗) = θ(x ∨ x∗) = D,
because of x ∨ x∗ ∈ D. Therefore L/θ is a Boolean algebra.

4 Open Problem

(1). For any two filters F,G of a Stone lattice, it can be easily observed that
F+∨G+ ⊆ (F ∩G)+. It is under investigation that whether the equality
exists or not for any two filter of a Stone lattice.

(2). The operation β ◦ α is a closure operation on the class of all filters of a
Stone lattice. Still some investigation has to be carried to derive some
set of equivalent conditions for the existence of equality F = β ◦ α(F ).
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