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Abstract

Let R be a semiprime ring, I a nonzero ideal of R and F is a gener-
alized derivation associted with a derivation d. If F satisfies any one of
following conditions: (i) F (xy)− xy ∈ Z(R), (ii) F (xy)− yx ∈ Z(R),
(iii) F (x)F (y)−xy ∈ Z(R), (iv) F (x)F (y)−yx ∈ Z(R) for all x, y ∈
I, then [I,R]d(R) = (0). In particular if R is prime, then either R is
commutative or d = 0.
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1 Introduction

Throughout this paper, R will represent an associative ring with center Z(R).
Recall that R is called prime if aRb = (0) implies a = 0 or b = 0; it is semiprime
if aRa = (0) implies that a = 0. Clearly, every prime ring is a semiprime ring.
For x, y ∈ R, [x, y] = xy − yx (resp. x ◦ y = xy + yx) denote the commutator
(resp. the anticommutator) of x, y. An additive mapping d : R −→ R is
a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping
F : R −→ R is a generalized derivation if there exists a derivation d of R such
that F (xy) = F (x)y + xd(y) for all x, y ∈ R.
Several authors have proved commutativity theorems for prime and semiprime
rings admitting derivations or generalized derivations satisfying any one of
the properties (i)− (iv) on any appropriate subset. Motivated by this result,
our aim in the following paper is to study generalized derivation satisfying
properties (i)− (iv) on a a nonzero ideal of a semiprime ring.
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2 Main results

In order to prove our theorems we shall need the following facts.

Fact 2.1 Let R be a semiprime ring and I a nonzero ideal of R. If x ∈ I
is such that xIx = (0), then x = 0. In particular, if xI = (0), then x = 0.

Fact 2.2 Let R be a semiprime ring and I a nonzero ideal of R. If xy ∈
Z(R) for all x, y ∈ I, then I ⊆ Z(R).

Proof. We have [x, r]y + x[y, r] = 0, for all x, y ∈ I, r ∈ R, replacing y by yx
we get xy[x, r] = 0, left multiplying last expression by r we obtain rxy[x, r] = 0
again replacing y by ry implies that xry[x, r] = 0 so [x, r]y[x, r] = 0, that is
[x, r]I[x, r] = 0, thus the semiprimeness together with Fact 2.1 yield [x, r] = 0
so that I ⊆ Z(R).

Theorem 2.3 Let R be a semiprime ring and I a nonzero ideal of R. If
R admits a generalized derivation F associated with a derivation d satisfying
F (xy)− xy ∈ Z(R) for all x, y ∈ I, then [I, R]d(R) = 0. In particular if R is
prime, then either R is commutative or d = 0.

Proof. We are given that

F (xy)− xy ∈ Z(R) for all x, y ∈ I. (1)

Replacing y by yz in (1), where z ∈ I, we get F (xy)z − xyz + xyd(z) ∈ Z(R)
that is [xyd(z), z] = 0, so that

xy[d(z), z] + x[y, z]d(z) + [x, z]yd(z) = 0 for all x, y, z ∈ I. (2)

Writing d(z)x instead of x in (2) we obtain

[d(z), z]xyd(z) = 0 for all x, y, z ∈ I. (3)

Substituting yz for y in (3) we get

[d(z), z]xyzd(z) = 0 for all x, y, z ∈ I. (4)

Right multiplying equation (3) by z we find that

[d(z), z]xyd(z)z = 0 for all x, y, z ∈ I. (5)

Employing equations (4) and (5) yield

[d(z), z]xy[d(z), z] = 0 for all x, y, z ∈ I. (6)
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Right multiplying equation (6) by x leads to

[d(z), z]xI[d(z), z]x = 0 for all x, z ∈ I. (7)

Hence Fact 2.1 forces that

[d(z), z]x = 0 for all x, z ∈ I, (8)

once again applying Fact 2.1 we get

[d(z), z] = 0 for all z ∈ I. (9)

In view of ([7], main Theorem), equation (9) yields [I, R]d(R) = 0.

Theorem 2.4 Let R be a semiprime ring and I a nonzero ideal of R. If
R admits a generalized derivation F associated with a derivation d satisfying
F (xy)− yx ∈ Z(R) for all x, y ∈ I, then [I, R]d(R) = 0. In particular if R is
prime, then either R is commutative or d = 0.

Proof. We have

F (xy)− yx ∈ Z(R) for all x, y ∈ I. (10)

Replacing y by yz in (10), where z ∈ R, we get

[y, z][x, z]+y[[x, z], z]+[x, z]yd(z)+x[y, z]d(z)+xy[d(z), z] = 0 for all x, y ∈ I, z ∈ R.
(11)

Substituting xy for y implies that

[x, z]y[x, z] + [x, z]xyd(z) = 0 for all x, y ∈ I, z ∈ R. (12)

Replacing z by z + x we obtain

[x, z]xyd(x) = 0 for all x, y ∈ I, z ∈ R. (13)

Writing d(x) instead of z in (13) we get

[d(x), x]xyd(x) = 0 for all x, y ∈ I. (14)

Replacing y by yx in (14) we get

[d(x), x]xyxd(x) = 0 for all x, y ∈ I. (15)

Right multiplying equation (14) by x we obtain

[d(x), x]xyd(x)x = 0 for all x, y ∈ I. (16)
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Employing equations (15) and (16) we arrive at [d(x), x]xy[d(x), x] = 0, so
that

[d(x), x]xI[d(x), x]x = 0 for all x ∈ I. (17)

In view of equation (17) Fact 2.1 forces that [d(x), x]x = 0, so that

[d(x), x]x2 = 0 for all x ∈ I. (18)

On the other hand replacing y by x2 in (10) we get

x2[d(x), x] = 0 for all x ∈ I. (19)

Comparing equations (18) and (19) we conclude that [[d(x), x], x2] = 0, so

[[d(x2), x2], x2] = 0 for all x ∈ I. (20)

Accordingly, ([7], main Theorem) assures that [I, R]d(R) = 0.

Theorem 2.5 Let R be a semiprime ring and I a nonzero ideal of R. If
R admits a generalized derivation F associated with a derivation d satisfying
F (x)F (y) − xy ∈ Z(R) for all x, y ∈ I, then [I, R]d(R) = 0. In particular if
R is prime, then either R is commutative or d = 0.

Proof. Suppose that

F (x)F (y)− xy ∈ Z(R) for all x, y ∈ I. (21)

Replacing y by yz, where z ∈ I, we get

[F (x)yd(z), z] = 0 for all x, y, z ∈ I. (22)

Writing zy instead of y in (22) we obtain

[F (x)zyd(z), z] = 0 for all x, y, z ∈ I. (23)

Substituting xz for x in (22) and using (23) leads to

[xd(z)yd(z), z] = 0 for all x, y, z ∈ I. (24)

Replacing x by xz we arrive at

[xzd(z)yd(z), z] = 0 for all x, y, z ∈ I. (25)

Right multiplying (24) by z implies that

[xd(z)yd(z)z, z] = 0 for all x, y, z ∈ I. (26)



Some results on semiprime rings with generalized derivations 25

Subtracting (26) from (25) we find that

[x[d(z)yd(z), z], z] = 0 for all x, y, z ∈ I. (27)

Putting d(z)yd(z)x instead of x in (27) we obtain

[d(z)yd(z), z]I[d(z)yd(z), z] = 0 for all y, z ∈ I. (28)

Applying Fact 2.1 we deduce

[d(z)yd(z), z] = 0 for all y, z ∈ I (29)

Now replacing y by yd(z)x where x ∈ I we obtain

d(z)y[d(z), z]xd(z) = 0 for all x, y, z ∈ I. (30)

Substituting zy for y yield

d(z)zy[d(z), z]xd(z) = 0 for all x, y, z ∈ I. (31)

Left multiplying equation (30) by z we get

zd(z)y[d(z), z]xd(z) = 0 for all x, y, z ∈ I. (32)

Subtracting (32) from (31) we arrive at

[d(z), z]y[d(z), z]xd(z) = 0 for all x, y, z ∈ I. (33)

Replacing y by xd(z)y implies that

[d(z), z]xd(z)I[d(z), z]xd(z) = 0 for all x, z ∈ I. (34)

Hence
[d(z), z]xd(z) = 0 for all x, z ∈ I. (35)

Replacing x by xz in (35) we get

[d(z), z]xzd(z) = 0 for all x, z ∈ I. (36)

Right multiplying (35) by z we result

[d(z), z]xd(z)z = 0 for all x, z ∈ I. (37)

Thus
[d(z), z]I[d(z), z] = 0 for all z ∈ I, (38)

so that
[d(z), z] = 0 for all z ∈ I. (39)

Applying ([7], main Theorem) we conclude that [I, R]d(R) = 0.
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Theorem 2.6 Let R be a semiprime ring and I a nonzero ideal of R. If
R admits a generalized derivation F associated with a derivation d satisfying
F (x)F (y) − yx ∈ Z(R) for all x, y ∈ I, then [I, R]d(R) = 0. In particular if
R is prime, then either R is commutative or d = 0.

Proof. We have

F (x)F (y)− yx ∈ Z(R) for all x, y ∈ I. (40)

Replacing y by yz, where z ∈ I, we get

(F (x)F (y)− yx)z + y[x, z] + F (x)yd(z) ∈ Z(R) for all x, y, z ∈ I, (41)

so that

[y[x, z], z] + [F (x)yd(z), z] = 0 for all x, y, z ∈ I. (42)

Writing xz instead of x, we obtain

[y[x, z], z]z + [F (x)zyd(z) + xd(z)yd(z), z] = 0 for all x, y, z ∈ I. (43)

Again replacing y by zy in (42) we arrive at

z[y[x, z], z] + [F (x)zyd(z), z] = 0 for all x, y, z ∈ I. (44)

Subtracting (44) from (43) we get

[[y[x, z], z], z] + [xd(z)yd(z), z] = 0 for all x, y, z ∈ I. (45)

Substituting xz for x in (45) we obtain

[[y[x, z], z], z]z + [xzd(z)yd(z), z] = 0 for all x, y, z ∈ I, (46)

Right multiplying equation (45) by z lead to

[[y[x, z], z], z]z + [xd(z)yd(z)z, z] = 0 for all x, y, z ∈ I, (47)

Employing (46) and (47) yield

[x[d(z)yd(z), z], z] = 0 for all x, y, z ∈ I, (48)

Since (48) is the same as (27) reasoning as in Theorem 2.5, we get the required
result.



Some results on semiprime rings with generalized derivations 27

3 Open Problems

To end this paper we introduce the following open questions :

(i) Does the condition F ([x, y]) − [x, y] ∈ Z(R) for all x, y ∈ I implies that
[I, R]d(R) = 0?

(ii) Does the condition F (x ◦ y) − x ◦ y ∈ Z(R) for all x, y ∈ I implies that
[I, R]d(R) = 0?

(iii) Does the condition [F (x), F (y)] − [x, y] ∈ Z(R) for all x, y ∈ I implies
that [I, R]d(R) = 0?

(iv) Does the condition F (x)◦F (y)−x◦ y ∈ Z(R) for all x, y ∈ I implies that
[I, R]d(R) = 0?
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