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Abstract

In this short note, a new weighted Erdös-Mordell inequal-
ity Involving Interior Point of a triangle is established. By
it’s application, some interesting geometric inequalities are de-
rived.
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1 Introduction

Throughout the paper we assume4ABC be a Triangle, and denote by a, b, c its
sides’ lengths, ∆ be the area. Let P be an interior point, Extend AP,BP,CP
respectively to meet the opposite sides at D,E and F . Let PD = r′1, PE =
r′2, PF = r′3, ∆1, ∆2, ∆3 denote the areas of 4BPC, 4CPA, 4APB.
Ra, Rb, Rc the circumradii of the triangles BPC,CPA,APB, respectively. Let
R1, R2, R3 be the distances from P to A,B,C, and also let r1, r2, r3 be the
distances from P to the sides AB,BC,CA.

Then Erdös-Mordell inequality is true:

Theorem 1.1.

R1 +R2 +R3 ≥ 2 (r1 + r2 + r3) (1)

whereat equality holds if and only if the triangle is equailateral and the
point P is its center. This inequality was conjectured by Erdös in 1935[1], and
was first proved by Mordell in 1937[2].

In the paper[3], D. S. Mitrnović etc noted some generalizations of Erdös-
Mordell inequality in 1989. Among their results are the following theorem for
three-variable quadratic Erdös-Mordell type inequality :
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Theorem 1.2. If x, y, z are three real numbers, then for any point P inside
the triangle ABC, we have

x2R1 + y2R2 + z2R3 ≥ 2 (yzr1 + zxr2 + xyr3) (2)

with equality holding if and only if x = y = z and P is the center of equilateral
4ABC.

Recently, Jiang [6] presented a new weighted Erdös-Mordell type inequality.
In this note, we give another new weighted Erdös-Mordell type inequality, as
application, some interesting geometric inequalities are also established.

2 Main results

In order to prove Theorem 2.2 below, we need the following lemma.

Lemma 2.1. For any point P inside 4ABC, x, y, z ∈ R, then we have

x2sin2A+ y2sin2B + z2sin2C ≤ 1

4

(
yz

x
+
zx

y
+
zy

z

)2

. (3)

Proof. We make use of Kooi’s inequality [4]:
For real numbers λ1, λ2, λ3 with λ1 + λ2 + λ3 6= 0,

(λ1 + λ2 + λ3)
2R2 ≥ λ2λ3a

2 + λ3λ1b
2 + λ1λ2c

2; (4)

Where R be circumradius of triangle ABC, equality holds if and only if the
point with homogeneous barycentric coordinates (λ1 : λ2 : λ3) with reference
to triangle ABC is the circumcenter of the triangle.

Now, Lemma 2.1 follows from (4) with λ1 = yz
x
, λ2 = zx

y
, λ3 = xy

z
, and the

law of sines: a = 2R sinA, b = 2R sinB, c = 2R sinC.

Now we are in a position to state and prove our main result.

Theorem 2.2. For any point P inside triangle ABC, Extend AP,BP,CP
respectively to meet the opposite sides at D,E and F . Let Ra, Rb, Rc the cir-
cumradiuses of triangles 4BPC, 4CPA, 4APB, and let PD = r′1, PE =
r′2, PF = r′3. x, y, z are positive real numbers, we have

xr′1√
RbRc

+
yr′2√
RcRa

+
zr′3√
RaRb

≤ 1

2

(
yz

x
+
zx

y
+
xy

z

)
. (5)

with equality holding if and only if x = y = z and P is the center of
equilateral 4ABC.
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Proof. Let ∠BPC = α,∠CPA = β,∠APB = γ. It is obvious that 0 <
α, β, γ < π and α + β + γ = 2π.

By using spread angle theorem, we have.

sinα

r′1
=

sin(π − β)

R2

+
sin(π − γ)

R3

=
sin β

R2

+
sin γ

R3

≥ 2

√
sin β sin γ

R2R3

,

Thus,

2r′1 ≤
√
R2R3 csc β csc γ sinα.

Make use of b = 2Rb sin β, c = 2Rc sin γ, we get

r′1√
RbRc

≤
√
R2R3

bc
sinα,

=

√
∆1

∆
sinA sinα

Let

A′ = π − α,B′ = π − β, C ′ = π − γ

Because

√
sinA sinα ≤ 1

2
(sinA+ sinα) = sin

A+ A′

2
cos

A− A′

2
≤ sin

A+ A′

2

we have,

xr′1√
RbRc

≤
√

∆1

∆
x sin

A+ A′

2
, (6)

By the same way, one can get

yr′2√
RcRa

≤
√

∆2

∆
y sin

B +B′

2
, (7)

zr′3√
RaRb

≤
√

∆3

∆
z sin

C + C ′

2
, (8)
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Combining expression (6), (7), (8) and By Cauchy’s inequality, we have

∑ xr′1√
RbRc

≤
∑√

∆1

∆
x sin

A+ A′

2

≤
√∑ ∆1

∆

∑
x2 sin2 A+ A′

2
,

=

√∑
x2 sin2 A+ A′

2
.

Let

θ =
A+ A′

2
, φ =

B +B′

2
, ϕ =

C + C ′

2
.

Obviously, 0 < θ, φ, ϕ < π and θ + φ+ ϕ = π, so θ, φ, ϕ can be angles of a
triangle A1B1C1. Applying Lemma 2.1 for the triangle A1B1C1 we obtain

x2 sin2 θ + y2 sin2 φ+ z2 sin2 ϕ ≤ 1

4

(
yz

x
+
zx

y
+
zy

z

)2

.

This conclude that

xr′1√
RbRc

+
yr′2√
RcRa

+
zr′3√
RaRb

≤ 1

2

(
yz

x
+
zx

y
+
xy

z

)
.

and with equality holding if and only if x = y = z, and P is the center of
equilateral 4ABC. The proof of Theorem 2.2 is completed.

3 Some application

In this section we give some applications of Theorem 2.2.
Noticed r1 ≤ r′1 etc, we have

xr1√
RbRc

+
yr2√
RcRa

+
zr3√
RaRb

≤ 1

2

(
yz

x
+
zx

y
+
xy

z

)
. (9)

By using AM-GM inequality, we have
√
RbRb ≤ 1

2
(Rb +Rb), then from (5)

we have

xr′1
Rb +Rc

+
yr′2

Rc +Ra

+
zr′3

Ra +Rb

≤ 1

4

(
yz

x
+
zx

y
+
xy

z

)
. (10)

By the same way of (9), the following inequality holds.

xr1
Rb +Rc

+
yr2

Rc +Ra

+
zr3

Ra +Rb

≤ 1

4

(
yz

x
+
zx

y
+
xy

z

)
. (11)
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let x = y = z = 1 in (11), we have

r1
Rb +Rc

+
r2

Rc +Ra

+
r3

Ra +Rb

≤ 3

4
. (12)

In fact, (12) was conjectured by Liu in [5] and here we obtained a proof.

Corollary 3.1. If x, y, z > 0, then

x2Ra + y2Rb + z2Rc ≥ 2 (yzr′1 + zxr′2 + xyr′3) (13)

Proof. alter x→ x′
√
RbRc, y → y′

√
RcRa, z → z′

√
RaRb(x, y, z > 0) in (5), we

obtain

x′r′1 + y′r′2 + zr′3 ≤
1

2

(
y′z′

x′
Ra +

z′x′

y′
Rb +

x′y′

z′
Rc

)
. (14)

and then, let y′z′

x′ = x2, z
′x′

y′
= y2, , x

′y′

z′
= z2 in (14), then (13) is obtained.

(13) is similar to (2), that was conjectured by Liu in [5].
Obviously.

x2Ra + y2Rb + z2Rc ≥ 2 (yzr1 + zxr2 + xyr3) . (15)

Let x = y = z = 1 in (13)and (15), then we have.

Ra +Rb +Rc ≥ 2 (r′1 + r′2 + r′3) (16)

and
Ra +Rb +Rc ≥ 2 (r1 + r2 + r3) . (17)

Note that (17) is similar to (1).
let x = y = z = 1 in (5) and by AM-GM inequality, we have

RaRbRc ≥ 8r′1r
′
2r

′
3. (18)

and
RaRbRc ≥ 8r1r2r3. (19)

4 Open problem

At the end, we pose an open problem.
Open problem: For an interior point P and positive real numbers x, y, z,

Let AD = w′
1, BE = w′

2, CF = w′
3, R and r denote the circumradius and

inradius of triangle ABC respectively, then

xw′
1√

RbRc

+
yw′

2√
RcRa

+
zw′

3√
RaRb

≤
√

2 +
r

2R

(
yz

x
+
zx

y
+
xy

z

)
. (20)
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