Int. J. Open Problems Compt. Math., Vol. 6, No. 3, September, 2013 ISSN 1998-6262; Copyright ©ICSRS Publication, 2013 www.i-csrs.org

Arithmetics in the set of beta-polynomials

M.Hbaib¹, Y.Laabidi²

¹ Department of Mathematics, Faculty of Science, Sfax University, BP 1171, Sfax 3000, Tunisia e-mail: mmmhbaib@gmail.com

² Department of Mathematics, Faculty of Science, Sfax University, BP 1171, Sfax 3000, Tunisia e-mail: labidiyamna@yahoo.fr

Abstract

Let β be a formal series with $deg(\beta) \geq 2$, the aim of this paper is to prove that the maximal length of the finite β -fractional parts in the β -expansion of product of two beta-polynomials (a formal series that have not β -fractional part), denoted $L_{\odot}(\beta)$ is finite when β is Pisot or Salem series. Especially, we give its exact value if β have one conjugate with absolute value smaller than $\frac{1}{|\beta|}$ and if β is a Pisot series verifying $\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_0 = 0$ such that $deg(\beta) = m \geq 2$ and $deg(A_0) = s \geq$ $deg(A_i) \quad \forall 0 \leq i \leq d-2$.

Keywords: Formal power series, β -expansion, β -polynomials. **2010 Mathematics Subject Classification:** 11R06, 37B50.

1 Introduction

The β -expansion of real numbers was introduced by A. Rényi [12]. Since its introduction in 1975, its properties arithmetic, diophantine and ergodic have been extensively studied by several authors.

Let $\beta > 1$ be a real number. The β -expansion of a real number $x \in [0, 1)$ is defined by the sequence $(x_i)_{i\geq 1}$ with values in $\{0, 1, ..., [\beta]\}$ produced by the β -transformation $T_{\beta}: x \longrightarrow \beta x \pmod{1}$ as follows:

$$\forall i \ge 1, x_i = [\beta T_{\beta}^{i-1}(x)], \text{ and thus } x = \sum_{i\ge 1} \frac{x_i}{\beta^i}$$

We write $d_{\beta}(x) = 0.x_1 x_2$

In [11], Parry showed that for any $x \in [0, 1)$, $d_{\beta}(x)$ is the only transformation of x in base β which satisfies the following condition called the Parry condition:

$$\forall n \in \mathbb{N}^*, \ S^n((x_i)_{i \in \mathbb{N}^*})) <_{lex} d^*_\beta(1)$$

where $S((x_i)_{i \in \mathbb{N}^*}) = (x_{i+1})_{i \in \mathbb{N}^*}$ and $d^*_{\beta}(1) = \begin{cases} d_{\beta}(1) & \text{if } d_{\beta}(1) \text{ is infini} \\ (t_1 \dots t_{m-1}, t_m - 1)^{\infty} & \text{if } d_{\beta}(1) = 0.t_1 \dots t_m. \end{cases}$

Now let x > 1 be a positive real number, so there exist $k \in \mathbb{N}^*$ such that $\beta^{k-1} \leq x < \beta^k$. So $\frac{x}{\beta^k} \in [0, 1)$ and let $d_\beta(\frac{x}{\beta^k}) = (x_i)_{i \geq 1}$ finely we get $d_\beta(x) = (x_{i+k+1})_{i \geq -k}$.

Let $d_{\beta}(x) = (x_i)_{i \geq -n}$, so $x = \sum_{i=0}^{n} x_{-i}\beta^i + \sum_{i>0} x_i\beta^{-i}$. The part with non-negatives powers of β is called the β -integer part of x, denoted by $[x]_{\beta}$. The part with negatives powers of β is called the β -fractional part of x, denoted by $\{x\}_{\beta} = x - [x]_{\beta}$, this allows a natural generalization of the definition of development of real number in base 10.

If there exists $n \in \mathbb{N}$ such that $|x| = \sum_{i=0}^{n} x_i \beta^i$, where $x_n \cdots x_0$ is the β -expansion of |x|, then x is called β -integer and the set of β -integers is denoted by \mathbf{Z}_{β} .

The set $Fin(\beta)$, introduced in [6], is defined by $\{\beta^{-k} \mathbf{Z}_{\beta} / k \in \mathbb{N}\}$. It allows to generalize the frame work of numeration to the case of a non-integer base β .

We know that Z_{β} and $Fin(\beta)$ are not stable under usual operations like addition and multiplication.

In order to study arithmetics on β -integers, we interested on the β -expansion of the number obtained by addition or multiplication of two β -integers when the β -expansion of the sum or the product is finite.

The following notation $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ are introduced in [8].

Definition 1.1

$$L_{\oplus}(\beta) = \min\{n \in \mathbb{N} \setminus \forall x, y \in \mathbf{Z}_{\beta} \text{ such that } x + y \in Fin(\beta) \Rightarrow \beta^{n}(x + y) \in \mathbf{Z}_{\beta}\}$$

$$L_{\odot}(\beta) = \min\{n \in \mathbb{N} \setminus \forall x, y \in \mathbb{Z}_{\beta} \text{ such that } xy \in Fin(\beta) \Rightarrow \beta^{n}(xy) \in \mathbb{Z}_{\beta}\}$$

Minimum of an empty set is defined to be $+\infty$.

We can see that $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ represent respectively the maximal possible finite length of the β -fractional part which may appear when one adds or multiplies two β integers, otherwise they designate the maximal finite shift after the comma for the sum or product of two β -integers.

The computation of these values gives an indication on the difficulty of performing arithmetics on \mathbf{Z}_{β} .

Let us explain now why we are interested in the case where $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ are finite: Indeed, if the sum or the product of two β -integers belongs to $Fin(\beta)$, then the length of the β -fractional part of this sum or product is bounded by a constant which only

depends on β .

If the set of the length sums or products of two β -integers is unbounded, then performing arithmetics in \mathbf{Z}_{β} will be very difficult if not impossible, since one can not compute in a finite time any operation on β -integers.

Let us mention that to our knowledge no example is known of a β such that $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ are infinite, however it has been proven in [6] and [7] that $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ are finite when β is Pisot (a real algebraic integer greater than 1 with all conjugates strictly inside the unit disk). The computation of these values is however not so easy, especially for $L_{\oplus}(\beta)$. The case of quadratic Pisot numbers has been studied in [5] when β is a unit. The authors gave exact values for $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$, when $\beta > 1$ is a solution either of equation $x^2 = mx - 1, m \in \mathbb{N}, m \geq 3$ or of equation $x = mx + 1, m \in \mathbb{N}$. In the first case $L_{\oplus}(\beta) = L_{\odot}(\beta) = 1$, in the second case $L_{\oplus}(\beta) = L_{\odot}(\beta) = 2$, and in [8] otherwise. However, when β is of higher degree, it is a difficult problem to compute the exact value of $L_{\oplus}(\beta)$ or $L_{\odot}(\beta)$, and even to compute upper and lower bounds for these two constants.

Several examples are Studied in [2], where a method is described in order to compute upper bounds for $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ for Pisot numbers satisfying additional algebraic properties, for example, in the Tribonacci case, that is, when β is the positive root, of the polynomial $x^3 - x^2 - x - 1$, we have $L_{\oplus}(\beta) = 5$, let's note that until now, we don't know the value of $L_{\odot}(\beta)$ in the case of the Tribonacci number, it is only proven in [2] that $4 \leq L_{\odot}(\beta) \leq 5$.

The condition Pisot is not necessary to have $L_{\oplus}(\beta)$ and $L_{\otimes}(\beta)$ are finite: L. S. Guimond, Z. Masáková and E. Pelantová in [8] prove that if β is an algebraic number such that at least one among its conjugates with modulus smaller than 1, so $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ are finite.

In this paper, we define a similar concepts over the field of formal series. We begin in Section 1 by introducing the field of formal series and the β -expansion over this field. In Section 2, we will show that the condition Pisot is not necessary to have $L_{\otimes}(\beta)$ are finite. Especially, we give a sufficient condition for the conjugates of β to obtain $L_{\odot}(\beta) = 1$.

In Section 3, we prove the finiteness of $L_{\odot}(\beta)$ when β is Pisot or Salem formal power series and we give its exact value in the case of Pisot with some additional conditions.

2 Preliminaries

Let \mathbb{F}_q be a finite field of q elements, $\mathbb{F}_q[x]$ is the ring of polynomials with coefficient in \mathbb{F}_q , $\mathbb{F}_q(x)$ is the field of rational functions and $\mathbb{F}_q(x,\beta)$ is the field of rational functions in base β . Let $\mathbb{F}_q((x^{-1}))$ be the field of formal power series of the form :

$$f = \sum_{k=-\infty}^{l} f_k x^k, \quad f_k \in \mathbb{F}_q$$

where

$$l = degf = \begin{cases} \max\{k : f_k \neq 0\} & \text{if } f \neq 0; \\ -\infty & \text{if } f = 0. \end{cases}$$

Define the absolute value by

$$|f| = \begin{cases} q^{deg f} & \text{if } f \neq 0; \\ 0 & \text{if } f = 0. \end{cases}$$

Since |.| is not archimedean, |.| fulfills the strict triangle inequality

$$|f+g| \le \max(|f|, |g|)$$
 and $|f+g| = \max(|f|, |g|)$ if $|f| \ne |g|$.

Let $f \in \mathbb{F}_q((x^{-1}))$, define the integer (polynomial) part $[f] = \sum_{k=0}^l f_k x^k$ where the empty sum, as usual, is defined to be zero. So $[f] \in \mathbb{F}_q[x]$ and $f - [f] = \{f\} \in D(0, 1)$.

An element $\beta \in \mathbb{F}_q((x^{-1}))$ is called algebraic integer of degree d if it verify $\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_1\beta + A_0 = 0$ and is called unit series if $A_0 \in \mathbb{F}_q^*$.

 β is Pisot (resp Salem) element if it is an algebraic integer over $\mathbb{F}_q[x]$, $|\beta| > 1$ and $|\beta_j| < 1$ for all Galois conjugates β_j (resp $|\beta_j| \leq 1$ and there exist at least one conjugate β_k such that $|\beta_k| = 1$).

In [3], Bateman and Duquette had characterized the Pisot and Salem element in $\mathbb{F}_q((x^{-1}))$.

Theorem 2.1 [3] Let $\beta \in \mathbb{F}_q((x^{-1}))$ be an algebraic integer over $\mathbb{F}_q[x]$ and

$$P(y) = y^n - A_{n-1}y^{n-1} - \dots - A_0, \quad A_i \in \mathbb{F}_q[x],$$

be its minimal polynomial. Then

(i) β is a Pisot element if and only if $|A_{n-1}| > \max_{0 \le j \le n-2} |A_i|$. (ii) β is a Salem element if and only if $|A_{n-1}| = \max_{0 \le j \le n-2} |A_i|$.

Let $\beta \in \mathbb{F}_q((x^{-1}))$ with $|\beta| > 1$. A representation in base β (or β -representation) of a formal series $f \in D(0, 1)$ is an infinite sequence $(x_i)_{i \ge 1}$, $x_i \in \mathbb{F}_q[x]$, such that

$$f = \sum_{i \ge 1} \frac{x_i}{\beta^i}.$$

A particular β -representation of f is called the β -expansion of f in base β , noted $d_{\beta}(f)$, which is obtained by using the β -transformation T_{β} in the unit disk which is given by $T_{\beta}(f) = \beta f - [\beta f]$. Then $d_{\beta}(f) = (a_i)_{i\geq 1}$ where $a_i = [\beta T_{\beta}^{i-1}(f)]$, for better characterization of β -expansion, in [9], M.Hbaib and M.Mkaouar showed the following theorem.

Theorem 2.2 [9] An infinite sequence $(a_i)_{i\geq 1}$ is the β -expansion of $f \in D(0,1)$ if and only if $|a_i| < |\beta|$ for all $i \geq 1$.

Now let $f \in \mathbb{F}_q((x^{-1}))$ be an element with $|f| \ge 1$. Then there is a unique $k \in \mathbb{N}^*$ such that $|\beta|^{k-1} \le |f| < |\beta|^k$, so $|\frac{f}{\beta^k}| < 1$ and we can represent f by shifting $d_\beta(\frac{f}{\beta^k})$ by k digits to the left. Therefore, if $d_\beta(f) = 0.a_1a_2a_3...$ then $d_\beta(\beta f) = a_1.a_2a_3...$ Let $Fin(\beta)$ be the set of f in $\mathbb{F}_q((x^{-1}))$ which have a finite β -expansion, so the β expansion of every $f \in Fin(\beta)$ has this form:

$$d_{\beta}(f) = a_k a_{k-1} \cdots a_1 a_0 a_{-1} a_{-2} \cdots a_m$$
, where $m \in \mathbb{Z}$.

The part $a_k a_{k-1} \cdots a_1 a_0$ is called the β -polynomial part of f and the part $a_{-1} a_{-2} \cdots a_m$ is called the β -fractional part of f.

We define also $deg_{\beta}(f) = k$ and $ord_{\beta}(f) = m$.

If $ord_{\beta}(f) \geq 0$ then f is called β -polynomial and the set of β -polynomials is denoted by $(\mathbb{F}_q[x])_{\beta}$, who is the analogue of \mathbb{Z}_{β} in the real case.

We can define by an analogy with the real case the quantity $L_{\oplus}(\beta)$ and $L_{\odot}(\beta)$ as follows:

$$L_{\oplus}(\beta) = \min\{n \in \mathbb{N} \setminus \forall f, g \in (\mathbb{F}_q[x])_{\beta} \text{ such that } f + g \in Fin(\beta) \Rightarrow \beta^n(f+g) \in (\mathbb{F}_q[x])_{\beta}\}$$
$$L_{\odot}(\beta) = \min\{n \in \mathbb{N} \setminus \forall f, g \in (\mathbb{F}_q[x])_{\beta} \text{ such that } fg \in Fin(\beta) \Rightarrow \beta^n(fg) \in (\mathbb{F}_q[x])_{\beta}\}.$$
Minimum of an empty set is defined to be $+\infty$.

Remark 2.3 Let us note that in the case of formal series the quantity $L_{\oplus}(\beta)$ is not interesting, because we know that in contrast to the real case, if $f, g \in \mathbb{F}_q((x^{-1}))$, we have $d_{\beta}(f+g) = d_{\beta}(f) + d_{\beta}(g)$, so the sum of two β -polynomials is always a β -polynomial.

To calculate $L_{\odot}(\beta)$ for the families of basis β , we excluded the case when $deg(\beta) = 1$, since in this trivial case, the product of two β -polynomials is a β -polynomial, so we have $L_{\odot}(\beta) = 0$.

Let $\beta \in \mathbb{F}_q((x^{-1}))$ with $|\beta| > 1$ be an algebraic on $\mathbb{F}_q[x]$ and let β_2, \ldots, β_n be the conjugates of β . We associate for every $f = \sum_{i=0}^n a_i \beta^i$, the j-th conjugate which is defined by $f_j = \sum_{i=0}^n a_i \beta^i_j$.

3 Main results

3.1 Sufficient conditions for finiteness of $L_{\odot}(\beta)$

In the following theorem, we will prove that $L_{\odot}(\beta)$ is finite when β is an algebraic integer. This result does not have an analogue to the real case.

Theorem 3.1 Let $\beta \in \mathbb{F}_q((x^{-1}))$, with $|\beta| > 1$ be an algebraic integer on $\mathbb{F}_q[x]$. Then $L_{\odot}(\beta)$ is finite.

Proof Let $f = a_s\beta^s + a_{s-1}\beta^{s-1} + ... + a_0$ and $g = b_m\beta^m + b_{m-1}\beta^{m-1} + ... + b_0$, where $|a_i| < |\beta|$ for all $0 \le i \le s$ and $|b_j| < |\beta|$ for all $0 \le j \le m$, such that $fg \in Fin(\beta)$. Therefore, we can write

 $fg = c_n\beta^n + c_{n-1}\beta^{n-1} + \ldots + c_0 + c_{-1}\beta^{-1} + c_{-2}\beta^{-2} + \ldots + c_{-k}\beta^{-k}, \text{ with } |c_j| < |\beta| \text{ for all } -k \leq j \leq n.$ we denote by $h_j = c_{-1}\beta_j^{-1} + c_{-2}\beta_j^{-2} + \ldots + c_{-k}\beta_j^{-k}$ for all $1 \leq j \leq d$, where $\beta_1 = \beta$ and $\beta_j, 2 \leq j \leq d$ are the Galois conjugates of β and d is the algebraic degree of β . Then

$$h_j = \sum_{i=0}^{d-1} \alpha_i \beta_j^{-i}$$
 where $\alpha_i \in \mathbb{F}_q[x]$ for all $0 \le i \le d-1$.

We have $|h| = |h_1| < 1$, if $|\beta_j| \ge 1$ then $|h_j| = |c_{-1}\beta_j^{-1} + c_{-2}\beta_j^{-2} + \dots + c_{-k}\beta_j^{-k}| \le |\beta|$, and if $|\beta_j| < 1$ then $|h_j| = |(a_s\beta_j^s + a_{s-1}\beta_j^{s-1} + \dots + a_0).(b_m\beta_j^m + b_{m-1}\beta_j^{m-1} + \dots + b_0) - (c_n\beta_j^n + c_{n-1}\beta_j^{n-1} + \dots + c_0)| \le |\beta|^2$.

Since the matrix $M = (\beta_j^{-k})_{1 \le j \le d; 0 \le k \le d-1}$ is non singular, we give that

$$\left(\begin{array}{c} \alpha_0\\ \vdots\\ \alpha_{d-1} \end{array}\right) = M^{-1} \left(\begin{array}{c} h_1\\ \vdots\\ h_d \end{array}\right).$$

This implies that $|\alpha_i| < C(\beta)$, where $C(\beta)$ is a constant depend only on β , therefore the number of elements $(\alpha_i)_{0 \le i \le d-1}$ is finite. So $L_{\odot}(\beta)$ is finite. \Box

3.2 Computation of $L_{\odot}(\beta)$

We propose the following quantitative study over this family of algebraic formal series β , that have at least one of its conjugates, say β_j , in absolute value smaller than $\frac{1}{|\beta|}$.

Theorem 3.2 Let $\beta \in \mathbb{F}_q((x^{-1}))$ be an algebraic on $\mathbb{F}_q[x]$ with $deg(\beta) \ge 2$, which have a conjugate, say β_j verifying $|\beta_j| \le \frac{1}{|\beta|}$. Then $L_{\odot}(\beta) \in \{0, 1\}$.

Proof.

Let $f = \sum_{i=0}^{s} a_i \beta^i$ and $g = \sum_{i=0}^{r} b_i \beta^i$ where $|a_i| < |\beta|$ and $|b_i| < |\beta|$, such that $fg \in Fin(\beta)$. Let $f_j = \sum_{i=0}^{s} a_i \beta^i_j$ and $g_j = \sum_{i=0}^{r} b_i \beta^i_j$. Since $|\beta_j| \le \frac{1}{|\beta|}$, we have $|f_j| < |\beta|$ and $|g_j| < |\beta|$. So $|f_i g_i| < |\beta|^2$

We assume that $d_{\beta}(fg) = c_h \dots c_0 \dots c_{-m}$ where $c_{-m} \neq 0$, so we have

$$|f_j g_j| = |\sum_{i=-m}^{h} c_i \beta_j^i| = |c_{-m} \beta_j^{-m}| \ge |\beta|^m$$

Therefore m < 2. \Box

As application of the above theorem, we have treat some specific cases.

Arithmetics in the set of beta-polynomials

Corollary 3.3 Let β be a quadratic Pisot unit with $deg(\beta) \geq 2$. Then $L_{\odot}(\beta) = 1$.

Proof.

In this case β verify $\beta^2 + A_1\beta + A_0 = 0$ where $A_0 \in \mathbb{F}_q^*$, so the unique conjugate of β is β_j such that $|\beta_j| = \frac{1}{|\beta|}$. By Theorem 3.2, we obtain $L_{\odot}(\beta) \in \{0,1\}$. Let now $A_1 = c_d x^d + \ldots + c_0$ where $d = deg(\beta) \ge 2$ and $c_d \ne 0$, we have $x, c_d \cdot x^{d-1} \in (\mathbb{F}_q[x])_{\beta}$ and $c_d x^d = -\beta - (c_{d-1}x^{d-1} + \ldots + c_0) - \frac{A_0}{\beta}$. So, $L_{\odot}(\beta) = 1$. \Box

Corollary 3.4 Let β be a cubic Salem unit with $deg(\beta) \geq 2$. Then $L_{\odot}(\beta) \in \{0, 1\}$.

Proof.

In this case β verify $\beta^3 + A_2\beta^2 + A_1\beta + A_0 = 0$, where $|A_1| = |A_2| = |\beta|$ and $A_0 \in \mathbb{F}_q^*$. So β have two conjugates β_2 and β_3 such that $|\beta_2| = \frac{1}{|\beta|}$ et $|\beta_3| = 1$. By Theorem 3.2, we obtain $L_{\odot}(\beta) \in \{0, 1\}$. \Box

Corollary 3.5 Let β be a Salem unit with $deg(\beta) \geq 2$ verifying:

$$\beta^d + A_{d-1}\beta^d + \ldots + A_1\beta + A_0 = 0, \qquad (3.1)$$

where $A_0 \in \mathbb{F}_q^*$ and $|A_1| = |A_{d-1}|$. Then $L_{\odot}(\beta) \in \{0, 1\}$.

Proof.

Let $\beta = \beta_1$ be a Salem unit verifying (3.1). Then

$$|A_0| = |\prod_{1 \le i \le d} \beta_i| = 1 \text{ where } \beta_2, \dots, \beta_d \text{ its conjugates}$$
$$|A_{d-1}| = |\sum_{i=1}^d \beta_i| = |A_1| = |\sum_{1 \le i_1 < \dots < i_{d-1} \le d} \beta_{i_1} \dots \beta_{i_{d-1}}|$$

If there exist β_i and β_j $(i \neq j)$ such that $|\beta_i| < 1$ and $|\beta_j| < 1$, then we obtain in this case $|A_1| < |\beta|$ which contradicts the hypothesis that

$$|\beta| = |A_{d-1}| = |A_1|.$$

we conclude that β have a unique conjugate β_j such that $|\beta_j| < 1$ and the other conjugates of equal absolute value 1. So $|\beta_j| = \frac{1}{|\beta|}$ and by Theorem 3.2, we obtain $L_{\odot}(\beta) \in \{0, 1\}$. \Box

The following theorem, allows us to calculate $L_{\odot}(\beta)$ for some Pisot series.

Theorem 3.6 let β be a Pisot series satisfying

$$\beta^d + A_{d-1}\beta^{d-1} + \dots + A_0 = 0$$

such that $deg(\beta) = m \ge 2$ and $deg(A_0) = s \ge deg(A_i)$, for all $0 \le i \le d-2$. Then for any $n \ge m$ the beta-expansion of x^n is given by:

$$d_{\beta}(x^n) = a_{\lambda(n)}^n \cdots a_0^n \cdot a_{-1}^n \cdots a_{-\mu(n)}^n \cdot a_{-\mu(n)}^n$$

Where λ and μ are two increasing sequences defined by:

$$\mu(n) = -ord_{\beta}(x^n) = (d-1)[\frac{n-s}{m-s}] \text{ and } deg(a^n_{-\mu(n)}) = s + (\overline{n-s}) = \sup_{0 \le k \le d-2} deg(a^n_{-\mu(n)+k})$$

where $(\overline{n-s})$ is the rest of the Euclidean division of (n-s) by (m-s).

To prove the above theorem, we will need the following lemma:

Lemma 3.7 Let β be a Pisot series. Then $ord_{\beta}(x^{n+1}) \leq ord_{\beta}(x^n)$ for all $n \in \mathbb{N}^*$.

Proof.

Let $P(y) = y^d + A_{d-1}y^{d-1} + \cdots + A_0$ be the minimal polynomial of β and c be the dominant coefficient of A_{d-1} , Let $m = \deg(\beta)$, for n < m-1 we have $ord_{\beta}(x^{n+1}) = ord_{\beta}(x^n) = 0$. Let now $n \ge m$ we suppose that

$$d_{\beta}(x^n) = a_{\lambda(n)}^n \cdots a_0^n a_{-1}^n \cdots a_{-\mu(n)}^n$$
 with $a_{-\mu(n)}^n \neq 0$.

We will show by induction on n that $\mu(n+1) \ge \mu(n)$ and $\deg(a_{-\mu(n)}^n) \ge s$, where $s = \deg A_0$.

So we have

$$x^{m} = -c^{-1}\beta - c^{-1}(A_{d-1} - cx^{m}) - \dots - c^{-1}A_{0}\beta^{-(d-1)}.$$

this implies

$$d_{\beta}(x^m) = a^m_{\lambda(m)}a^m_0.a^m_{-1}\cdots a^m_{-\mu(m)}$$

where $\begin{cases} a_{\lambda(m)}^{m} = -c^{-1} \\ \vdots & \text{and } \lambda(m) = 1, \ \mu(m) = d - 1 \\ a_{-\mu(m)}^{m} = -c^{-1}A_{0} \end{cases}$ Let now $\mathcal{A}_{n} = \{0 \le i \le d - 1 \text{ such that } \deg(a_{-\mu(n)+i}^{n}) = m - 1\}$

 $\mathcal{A}_n = \{ 0 \leq i \leq a - 1 \text{ such that } \deg(a_{-\mu(n)+i}) = m - 1 \}$

If $\mathcal{A}_n = \emptyset$, then $a_{-\mu(n+1)}^{n+1} = xa_{-\mu(n)}^n$ and $\mu(n+1) = \mu(n)$ and $\deg(a_{-\mu(n+1)}^n) = 1 + \deg(a_{-\mu(n)}^n)$. If $\mathcal{A}_n \neq \emptyset$, taking $k_n = \min \mathcal{A}_n$ and γ be the dominant coefficient of $a_{-\mu(n)+k_n}^n$.

• If $k_n = d - 1$, then $a_{-\mu(n+1)}^{n+1} = -c^{-1} \cdot \gamma \cdot A_0 + x \cdot a_{-\mu(n)}^n$ and $\mu(n+1) = \mu(n) \cdot \alpha_{-\mu(n+1)}$.

• If
$$k_n < d-1$$
, then $a_{-\mu(n+1)}^{n+1} = -c^{-1}\gamma A_0$ and $\mu(n+1) = \mu(n) + d - 1 - k_n$.

Lemma 3.8 Let β be a Pisot series, such that $m = deg(\beta) \ge 2$. Then $L_{\odot}(\beta) = -ord_{\beta}(x^{2m-2})$. Arithmetics in the set of beta-polynomials

Proof.

Let $f = a_n \beta^n + a_{n-1} \beta^{n-1} + \dots + a_0$ and $g = b_m \beta^m + b_{m-1} \beta^{m-1} + \dots + b_0$ in $\mathbb{F}_q[x]_\beta$ such that $f \cdot g \in \operatorname{Fin}(\beta)$, since

$$f.g = \sum_{k=0}^{n+m} (\sum_{p=0}^{k} b_p a_{k-p}) \beta^k.$$

We have $-ord_{\beta}(f.g) \leq max\{-ord_{\beta}(b_{p}a_{k-p}); 0 \leq p \leq k \leq n+m\}$, using the above lemma we get $L_{\odot}(\beta) \leq -ord_{\beta}(x^{2m-2})$. Or $f = x^{m-1} \in \mathbb{F}_{q}[x]_{\beta}$ and $-ord_{\beta}(f^{2}) = -ord_{\beta}(x^{2m-2})$, so $L_{\odot}(\beta) = -ord_{\beta}(x^{2m-2})$. \Box **Proof of Theorem 3.6.**

We will show the result by induction on $n \ge m$. For n = m, we have

$$x^{m} = -c^{-1}\beta - (A_{d-1} - cx^{m}) - \dots - c^{-1}A_{0}\beta^{-(d-1)}$$

where c is the dominant coefficient of A_{d-1} , so

$$-ord_{\beta}(x^{m}) = d - 1 = \mu(m)$$
 and $deg(a^{m}_{-\mu(m)}) = deg(-c^{-1}A_{0}) = s = s + (\overline{m-s})$

So the result is true for n = m.

Assume that
$$\mu(n) = -ord_{\beta}(x^n) = (d-1)\left[\frac{n-s}{m-s}\right]$$
 and $\deg(a^n_{-\mu(n)}) = s + (\overline{n-s})$. We have

$$x^{n} = a^{n}_{\lambda(n)}\beta^{\lambda(n)} + \dots + a^{n}_{0} + a^{n}_{-1}\beta^{-1} + \dots + a^{n}_{-\mu(n)}\beta^{\mu(n)}.$$

Therefore

$$x^{n+1} = xa_{\lambda(n)}^{n}\beta^{\lambda(n)} + \dots + xa_{0}^{n} + xa_{-1}^{n}\beta^{-1} + \dots + xa_{-\mu(n)}^{n}\beta^{\mu(n)}.$$

We distinguish two cases:

Case 1: $\deg(a_{-\mu(n)}^n) = m - 1$, in this case we have $(\overline{n-s}) = m - s - 1$, so $(n-s) = [\frac{n-s}{m-s}](m-s) + m - s - 1$, this implies $(n+1-s) = ([\frac{n-s}{m-s}] + 1)(m-s)$, hence $[\frac{n+1-s}{m-s}] = [\frac{n-s}{m-s}] + 1$ and $(\overline{n+1-s}) = 0$. Also we have

$$\mu(n+1) = -ord_{\beta}(x^{n+1}) = -ord_{\beta}(x^n) + d - 1$$

= $(d-1)[\frac{n-s}{m-s}] + (d-1)$
= $(d-1)([\frac{n-s}{m-s}] + 1)$
= $(d-1)[\frac{n+1-s}{m-s}]$

and $a_{-\mu(n+1)}^{n+1} = -c^{-1} \cdot \gamma \cdot A_0$ where γ is the dominant coefficient of $a_{-\mu(n)}^n$, so $\deg(a_{-\mu(n+1)}^{n+1}) = s = s + (\overline{n+1-s})$ **Case 2:** $\deg(a_{-\mu(n)}^n) < m-1$, in this case we have

$$\mu(n+1) = -ord_{\beta}(x^{n+1}) = -ord_{\beta}(x^n) = \mu(n)$$

and

$$a_{-\mu(n+1)}^{n+1} = \begin{cases} xa_{-\mu(n)}^n & \text{if } \deg(a_{-\mu(n)+d-1}^n) < m-1, \\ -c^{-1}.\delta.A_0 + xa_{-\mu(n)}^n & \text{if } \deg(a_{-\mu(n)+d-1}^n) = m-1. \end{cases}$$

where δ is the dominant coefficient of $a^n_{-\mu(n)+d-1}$. Therefore $\deg(a^{n+1}_{-\mu(n+1)}) = 1 + \deg(a^n_{-\mu(n)}) = 1 + s + (\overline{n-s}) = s + (\overline{n+1-s})$. \Box

Corollary 3.9 *let* β *be a Pisot series satisfying*

$$\beta^d + A_{d-1}\beta^{d-1} + \dots + A_0 = 0$$

such that $deg(\beta) = m \ge 2$ and $deg(A_0) = s \ge deg(A_i)$ $\forall 0 \le i \le d-2$. Then $L_{\odot}(\beta) = (d-1)([\frac{m-2}{m-s}]+1).$

Corollary 3.10 Let β be a Pisot series verifying $\beta^2 + A_1\beta + A_0 = 0$ such that $deg(\beta) = m$ and $deg(A_0) = s$. Then

$$L_{\odot}(\beta) = \left[\frac{m-2}{m-s}\right] + 1$$

4 Open Problem

Study other finiteness conditions and explicitly calculate $L_{\odot}(\beta)$ for other families of algebraic formal power series.

Is it possible to find conditions on β in order that $L_{\odot}(\beta) = 0$, meaning the set $(\mathbb{F}_q[x])_{\beta}$ is stable under multiplication?

References

- [1] S. Akiyama, *Pisot number and greedy algorithm*, Number theory, Diophantine, Computational and Algebraic Aspects., (1998), 9–21.
- [2] P. Ambroz, C. Frougny, Z. Masáková and E. Pelantová, Arathmetics on number systems with irrational bases, Bull. Belgian Math. Soc. Simon Stevin., 10 (2003), 641–659.
- [3] P. Bateman and Duquette, *The analogue of Pisot-Vijayaraghvan numbers in fields* of power series, Ill. J. Math., 6 (1962), 594–606.
- [4] V. Berth, A. Siegel, Purely periodic β-expansions in the pisot non unit case, J. Number Theory., 127 (2007), 153–172.
- [5] C. Burdik, C. Frougny, J. P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A., 31 (1998), 6449–6472.

- [6] C. Frougny and B.Solomyak, *Finite beta-expansions*, Ergodic. theory. Dynam. System., 12 (1992), 713–723.
- [7] L. S. Guimond, Z. Masáková and E. Pelantová, Combinatorial proprieties of infinite words associadied with cut-and-project sequences, J. theor. Nombers Bordeaux., 15 (2003), 697–725.
- [8] L. S. Guimond, Z. Masáková and E. Pelantová, Arathmetics on beta-expansions, Acta. Arith., 15 (2004), 23–40.
- [9] M. Hbaib, M. Mkaouar, Sur le bêta-dveloppement de 1 dans le corps des sries formelles, International Journal of Number Theory., 2 (2006), 365–377.
- [10] S. Ito, H. Rao, Purely periodic β-expansions with Pisot unit base, Proceedings of the AMS, 133 (2005), 953–964.
- [11] W.Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401–416.
- [12] A. Rènyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1975), 477–493.