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Abstract 

     Autism spectrum disorder (ASD) is a medical illness that markedly impacts the 

neurological function. An Individual with autism experiences challenges in 

acknowledging their names actively avoids establishing eye contact and demonstrates a 

limited capacity to express emotions. Biomedical image categorization is an important 

area of study that is increasingly popular among both researchers and clinicians for the 

purpose of detecting and diagnosing ASD disorders. The human face can function as a 

biological indicator since it has the ability to reflect the condition of the brain. Hence, it 

may be employed as a convenient and uncomplicated instrument for the early detection 

of ASDs. This research uses a variety of advanced techniques to detect individuals who 

have autism by analyzing their facial images. A range of deep learning (DL) models, 

including VGG16, InceptionV3, and EfficientnetB0, is used to identify autistic children 

by utilizing facial expressions detection. The research is carried out to empirically 

determine the optimal settings for the model optimizer and different hyperparameters in 

DL models with the goal of improving prediction accuracy. A conventional research 

dataset sourced from Kaggle comprising 2940 images of children analyzed as both 

having and not having autism is used to assess the DL models. The improved VGG16 

model attained a 95% accuracy rate on the test dataset. The findings of the present study 

suggest that the improved VGG16 model outperforms the models created by prior studies. 

and can aid clinicians in validating the precision of their first assessment of ASD in 

pediatric patients. 
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1 Introduction 

Autism spectrum disorder (ASD) is a complex neurological illness that disturbs speech, 

social communication, behavior, and cognitive development. ASD displays a wide 

range of indications, which is why it is referred to and described as a “spectrum” 

condition. People with ASD exhibit a range of impairments, which poses difficulties 

in accurately diagnosing and successfully treating the condition [1]. The precise cause 

of ASD is not completely understood; however, research proposes that a mixture of 

heritable and environmental aspects has a significant impact. Numerous genes have 

been recognized as possible contributions to the growth of ASD [2]. It is hypothesized 
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that genetic changes in aspects of these genes influence the expansion and functioning 

of the brain, resulting in the distinctive symptoms of ASD. Environmental variables 

have an influence on the likelihood that individuals will develop ASD both before and 

after birth. These variables encompass maternal illnesses during pregnancy, exposure 

to specific chemicals, and problems following childbirth [3]. Brain imaging studies 

have shown differences in brain structure and functioning in individuals with ASD. 

These disparities influence the way individuals handle and combine information, 

resulting in noticeable behavioral trends [4]. Presently, there is no definitive way to 

manage ASD. However, the early adoption of interventions and personalized therapy 

approaches significantly improve the general well-being of those affected by the 

condition. Practical behavior analysis (PBA) is a commonly used interactive behavioral 

intervention for persons with ASD. 

ASD is a multifaceted condition that disrupts a person’s everyday communication [5]. 

An individual with autism often encounters mild impairments and can occasionally 

need specialized assistance. Individuals with ASD commonly experience difficulties 

in communicating, resulting in their inability to effectively convey their thoughts, 

feelings, and intentions using spoken language, nonverbal gestures, or facial 

expressions during social interactions. While medical professionals frequently 

diagnose individuals with ASD by observing the neurophysiological indications 

associated with the disorder, at present, there is no ultimate physical signature or 

pathological method that can consistently recognize autism. Although an individual 

may not receive adequate therapy, an early diagnosis might offer some means to 

enhance their lifestyle [6]. The early detection of ASD symptoms might enhance the 

social lives of children by taking advantage of the malleability of brain development. 

Research also indicates that children who received interventions before the age of two 

obtained higher IQ scores than those who received medical assistance after the age of 

four [7]. According to a recent study, only a maximum of 30% of children with ASD 

are recognized after the age of three [8]. ASD is a neural illness that impacts many 

regions of the brain. It is a product of polymorphism, which refers to the genetic effect 

induced by the interplay of human genes [9]. According to research presented by the 

World Health Organization (WHO), around one in every 100 children has ASD. 

According to the Centers for Disease Control and Prevention (CDC), in 2021, the 

incidence of ASD was greatest in the USA, where around 1 in 44 children was affected. 

Furthermore, there are four times as many males as young male with ASD [10]. 

Numerous studies have examined the key attributes of autism from several perspectives, 

including the use of eye-tracking (ET) methods for facial-expression extractions [11], 

face recognition [12,13,14], biomedical image analysis [15], application development 

[16], and speech recognition [17]. Face recognition is a highly valuable approach for 

identifying a person’s emotive condition and can provide accurate diagnoses of autism. 

Facial analysis is a widely used technique for examining human faces and identifying 

differences among abnormal and abnormal faces. It can be utilized to uncover 

important information that may help identify behavioral patterns [18,19]. Given the 

recent advancements in predictive analytics for recognizing face patterns, considerable 

attention is currently being paid within autism research to investigating and examining 

data on children with ASD to identify the condition at a younger age. To reorganize 

the process of identifying facial expressions based on features in various neural 

disorders, the authors in [20] implemented the convolutional neural network (CNN) 

approach to diagnose ASD. The initial development of CNN was trained to segment 

crucial facial features, while the second iteration was employed to identify and classify 

facial expressions. In 2018, Haque and Valles partitioned the system into four 
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representations, which successfully recognized human facial expressions [21,22]. To 

do this, they made alterations to Kaggle’s Facial Expression Recognition 2013 

(FER2013) dataset, specifically aiming at young children with autism. These 

alterations involved manipulating the lighting effects by adjusting the contrast to create 

darker or brighter tones. Figure 1 provides a comprehensive summary of the many 

diagnostic techniques used for autism.  

 

 
Figure 1. Various technologies for autism detection. 

1.1 Contribution          

The key objective of this project is to improve the diagnosis of autism by using DL 

algorithms to establish an autism prediction model with the maximum precision. The main 

aim is to develop a highly precise prediction model capable of determining if an individual, 

regardless of age (adolescent, child, or adult), has or does not have ASD. The objective is 

to utilize a standardized methodology to diagnose autism and transform it into DL 

algorithms capable of utilizing medical data to provide predictions and observations. This 

will ultimately result in improved methods for the early identification of ASD in the future. 

2      Related Work 

The field of study focused on diagnosing ASD based on facial traits is experiencing 

remarkable growth, mostly due to its significant socioeconomic implications for emerging 

nations. This approach has the potential to be a significant advancement in the early 

analysis of ASD, serving as a crucial instrument for the first screening of both children 

with ASD and typically developing (TD) children. Recent research has shown the 

capability of deep neural networks, namely, the use of CNN models, in diagnosing various 

diseases [23,24,25,26,27,28,29,30,31,32]. CNNs are extensively employed as feature 

extractors for research problems including object identification and image segmentation 

and categorization due to their exceptional capacity to learn by autonomously identifying 

concealed characteristics from a substantial number of pictures. While CNNs are very 

efficient and precise, the process of training these models demands a substantial investment 

of time and computer resources.  

Akter et al. [33] utilized DL models to detect faces with ASD using a 2D-photo dataset 

obtained through the Kaggle platform. The researchers examined both narrow learning and 

DL techniques for identifying autism in children aged 2–14 and attained the maximum 

level of precision by using an enhanced version of the MobileNet-V1 model. In their study, 

Hosseini et al. [34] employed the MobileNet model to greatly enhance the accuracy of 
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autism detection. The visual characteristics were collected from DL models, which utilized 

three completely connected layers followed by a custom dense layer to provide predictions 

for ASD. Nevertheless, to obtain more precision, the authors excluded images depicting 

young infants in the datasets. Consequently, they successfully decreased the occurrence of 

incorrect positive and negative results, resulting in an overall accuracy of around 95%. In 

a subsequent study, the authors in [35] utilized the same dataset and directed their 

investigation toward advanced DL models such as Xception and EfficientNetB, with a 

specific focus on the area under the curve (AUC) evaluation metric. Khosla et al. [36] 

employed the InceptionResNetV2, InceptionV3, and MobileNet methods for detecting 

ASD and observed that these models achieved good accuracy compared to previous studies. 

Alsaade and Alzahrani [37] utilized DL models to train on an ASD dataset. The Xception 

model attained the greatest accuracy level, namely, of 91%. CNN-based models utilized 

for feature mining from an autistic image dataset have undergone thorough training on the 

ImageNet dataset [38]. 

Khalaji et al. [39] projected a pre-processing method that is not influenced by external 

stimuli, resulting in high classification accuracy. Michelass et al. [40] introduced a new 

technology based on ET signs from films to evaluate combined considerations and 

categorize people as either having ASD or being TD. The main advancement was the 

implementation of “floating Regions of Interest,” which monitor the eye’s movement in 

connection to the meaning of an item. The model used an integration approach consisting 

of random forest classifiers to categorize people as having ASD or being TD, based on the 

trajectory characteristics retrieved from the ET signals. The authors in [41] developed a 

model for the identification of interactive autism by employing eye-movement analysis. 

The use of a sequential neural network in the ET visualization resulted in a noteworthy 

accuracy of 95.7% and an AUC of 84%. Cilia et al. [42] planned a method that combines 

ET with picturing and machine learning (ML). In this method, the ET examination paths 

were transmuted into pictorial representations in the form of images, after which a CNN 

model was trained to precisely classify these photographs. The findings suggest that 

employing visual representation facilitated the diagnostic process and achieved a notable 

degree of precision. The CNN attained an accuracy rate of 90%, a sensitivity rate of 83%, 

and a precision rate of 80%.  

Gaspar et al. [43] presented a method for categorizing ASD using a kernel extreme learning 

machine (KELM). The training of the model was enhanced by employing data 

augmentation, and the accuracy of the KELM model was improved by utilizing the Giza 

pyramids construction (GPC) approach. The KELM achieved an accuracy rate of 95.8%. 

Zhong et al. [44] used four ML classifiers to distinguish between children with ASD and 

TD children by analyzing ET data. The authors employed forward feature selection to 

identify relevant attributes and fed them into ML classifiers. The support vector machine 

(SVM) attained the highest degree of accuracy, achieving 92.31%. The authors in [45] 

introduced a transfer learning technique for identifying ASD in people with strong 

cognitive abilities. The researchers utilized decision tree (TD), transfer learning, and 

logistic regression techniques on a dataset consisting of high-functioning ASD individuals 

and control patients. The findings exhibited a classification accuracy of 80.50%, indicating 

a high level of accuracy. Sun et al. [46] introduced a model that uses ET techniques to 

evaluate individually developing children and those with ASD at the same time. The 

program specifically targets stimuli related to limited interests. ASD was identified through 

network-based ML prediction (NBS-predict). 

Omar et al. [47] used various TD approaches based on the AQ-10 and 250 real-world 

datasets for detecting ASD. The researcher in [48] proposed various ML approaches, such 
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as KNN, SVM, and DT, for the diagnosis of ASD. Satu et al. [49] utilized several tree-

based classifiers to analyze samples of individuals aged 16–30 years and determine the 

features distinguishing a “normal” from an “autistic” mature individual. Erkan et al. [50] 

applied KNN, SVM, and Random Forest (RF) to assess the comparative effectiveness of 

different approaches in identifying ASD. Thabtah et al. [51] employed the information gain 

(IG) method to generate reduced sets of features for both adults and adolescents. These 

smaller groups were subsequently utilized as inputs for logistic regression to detect ASD.  

3      Materials and Methods 

This subsection presents in depth the planned methodology to be used in developing an 

ASD classification system based on DL techniques than can diagnose autism in children 

from facial expression images. This section presents the dataset collection, data 

preprocessing, DL classification models, output evaluation metrics, and results analysis. 

The framework of this methodology is shown in Figure 2. 

 

Figure 2: The framework of the proposed methodology 

3.1 Dataset Collection  

This research utilized a dataset of autistic children’s facial images from the Kaggle platform, an 

open-source resource for the research community [52]. The dataset included children aged 2–14 

years, predominantly between 2 and 8 years old, with all images being 2D Red, Grean, Blue. The 

data were divided into two categories: the autistic category, which consisted of images of children 

diagnosed with autism, and the non-autistic category, which consisted of images of children 

without an autism diagnosis. Additionally, a test folder was used to evaluate the trained model, 

containing two subfolders labeled “autistic” and “non-autistic,” each with 100 images 224 × 224 × 

3 in pixels. One subfolder comprised facial images of children with autism, and the other consisted 

of facial images of children collected arbitrarily from online explorations. In total, the dataset 

comprised 2,940 images, with 1,327 images of autistic children and 1,613 images of non-autistic 

children. 

3.2 Data Preprocessing  

For the autism recognition model utilizing facial expression features, we performed the 

following data preprocessing steps on the dataset. 
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Rescaling: All images were rescaled and normalized to a range of [0, 1] by applying a 

scaling factor of 1/255. 

Data augmentation: We implemented different data resampling and augmentation 

methods to improve the dataset and avoid the overfitting problem: images were randomly 

rotated within a range of 40 degrees, parallel loosened to 20% of their width, and vertically 

transformed up to 20% of their height. Additionally, shear transformations up to 10% were 

applied, images were randomly flipped horizontally, and zooming was performed within a 

range of 20%. Pixels outside the boundaries of the input were filled using the “nearest” 

mode. Images were loaded from directories using ImageDataGenerator, targeting an image 

size of 224 x 224 pixels. The batch size for training was set to 128. 

Label encoding: The binary class mode was used for classification, with classes labeled 

“non_autistic” and “autistic.” 

3.3 Feature Extraction and Classification Models 

In this phase, we used advanced DL models, namely, VGG16, InceptionV3, and 

EfficientNetB0, for feature mining and classification. These models were refined on our 

particular dataset after being pre-trained on sizable image datasets. With its tiny but deep 

architecture, VGG16 can efficiently capture intricate patterns. To preserve a variety of 

properties, InceptionV3 uses simultaneous convolution procedures with varying kernel 

sizes. For the best accuracy and efficiency, EfficientNetB0 balances network depth, width, 

and resolution. Individually, each model was adapted by adding exclusive classification 

layers to allow the differentiation of autistic from non-autistic facial expressions. 

3.3.1 The VGG16 Model 

The VGG16 model [53] is a deep CNN architecture recognized for its straightforwardness 

and efficiency in image recognition investigation. The model has 16 different layers, 

namely, 13 convolutional layers and three completely linked layers, which were pre-

trained on the ImageNet dataset for high-performance feature extraction. We applied this 

model for autism detection and improved it to include custom classifier layers tailored for 

this specific task. 
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Figure 3: The structure of the VGG16 model 

The base model is VGG16, pre-trained on ImageNet, with the top classification layers 

removed. To retain the valuable pre-trained weights, all layers except for the last few 

convolutional layers were frozen. The new classifier layers added to the model include a 

flatten layer, which converts the 2D feature maps to a 1D feature vector, followed by 256 

hidden neurons presented in a dense layer as well as a ReLU, which is a nonlinear 

activation function. The nest layer is a fully connected layer including 95 neurons and a 

nonlinear softmax activation function for classification. The model was assembled with 

the help of the Adam optimizer, which was set a learning rate of 0.001, and the loss function 

was used to calculate the model errors and set to sparse categorical cross-entropy. The 

training process involved 100 epochs. Table 1 outlines the parameters used in the VGG16 

architecture. 

Table 1: Summarizing the VGG16 model parameters 

Layer  Parameters  

Base Model VGG16 

Input Shape 224 x 224 x 3 

Frozen Layers All except the last few convolutional layers 

Flatten Layer Yes 

Dense Layer (ReLU) 256 units 

Output Layer (Softmax) 95 units 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Sparse Categorical Cross-Entropy 

Batch Size 128 

Epochs 100 

 

3.3.2 The Inceptionv3 Model 
 

We also applied and modified the InceptionV3 architecture [54] for autism identification 

based on facial expression features to fit our particular needs. Due to its deep and efficient 
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architecture, the InceptionV3 model is an excellent choice for capturing complex patterns 

in image data. To accept the custom layers specific to our research problem, the base model, 

InceptionV3, was pre-trained on the ImageNet dataset after the top classification layers 

were removed. To preserve already trained weights, all layers in the underlying 

InceptionV3 model were frozen. Figure 4 depicts the construction of the Inceptionv3 

model. 

 
Figure 4: The architecture of the Inceptionv3 model 

 

The newly added categorizer layers comprised a fully or completely connected dense layer 

with 128 units and a ReLU activation function, which was followed by a flatten layer that 

transformed the 2D feature maps into a 1D feature vector. A dropout layer, which can be 

used to avoid overfitting issues, was set to a rate value of 0.2, and the classification layer 

consisted of a fully connected dense layer with 64 units and a nonlinear softmax function 

for classification tasks. The model was trained by using the RMSprop optimizer, which 

was set a learning rate of 0.001, and the loss function was set to sparse categorical cross-

entropy. The training process involved 100 epochs. Table 2 shows the various parameters 

utilized in the Inceptionv3 model structure. 

 
  

Table 2: The hyperparameters applied in the Inceptionv3 model 

Layer  Parameters  

Base Model VGG16 

Input Shape 224 x 224 x 3 

Flatten Layer Yes 

Dense Layer (ReLU) 256 units 

Output Layer (Softmax) 95 units 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Sparse Categorical Cross-Entropy 

Batch Size 128 

Epochs 100 
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3.3.3 The EfficientNetB0 Model  
 

The EfficientNetB0 model [55] is part of the EfficientNet family, which is designed to 

achieve high performance with fewer parameters by scaling depth, width, and resolution 

uniformly. EfficientNetB0 is particularly efficient for image classification tasks, making it 

well-suited for applications with limited computational resources. The EfficientNetB0 

architecture was pre-trained on ImageNet, with its top layers removed. All layers in the 

base model were frozen. Figure 5 depicts the model structure.  

 

 

 

In this model architecture, we used a flatten layer, two dense layers with 256 neurons, and 

an activation function, which is ReLU. A rate of 0.5 as a value was set in the dropout layer, 

and in the last dense layer, there were two neurons representing the output dataset classes 

with a softmax activation function for the binary classification task. The dropout layer, 

which periodically deactivates neurons during training, aids in preventing overfitting, 

while the dense layers are designed to capture intricate patterns. Binary cross-entropy is 

utilized as the loss function when compiling the model using the RMSprop optimizer with 

a learning rate of 0.0001 and a decay rate of 1e-6. Additionally, effective feature extraction 

and dimensionality reduction are made possible by the dense block design in conjunction 

with global pooling layers. The parameters used in the model structure are shown in Table 

3. 
 

 

Table 3: Various hyperparameters applied in the EfficientNetB0 model. 

Layer  Parameters  

Input Shape (224, 224, 3) 

Optimizer RMSprop 

Learning Rate 0.0001 

Loss Function Binary Cross-Entropy 

Activation Function Softmax 

Number of Units (Dense Layers) 256 (twice) 

Dropout Rate 0.5 

Number of Classes 2 

Number of Epochs 100 

Pre-trained Weights ImageNet 

Figure 5: The structure of the EfficientNetB0 model 
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3.4 Evaluation Metrics 

Assessing the performance and testing results obtained by the proposed DL models, 

namely, VGG16, Inceptionv3, and EfficientNetB0, was crucial in gauging the 

effectiveness of the models. Several metrics are used to quantify performance, including 

accuracy, precision, recall, and F1-score, which are computed  from the confusion matrix. 

The evaluation measures provide an alternative perspective on the models’ advantages and 

disadvantages. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 × 100                                                                     (1) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
x100%                                                           (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑥100%                                        (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑥100%                       (4) 

 

4    Experimental Results 
This section highlights the findings from our study on autism detection using DL methods-

based models. We contrasted the performance and results obtained by three architectures, 

namely, VGG16, InceptionV3, and EfficientNetB0, which were trained and evaluated on 

a facial images dataset. The models were evaluated for their accuracy and capacity to 

classify images as autistic or non-autistic (Normal). 

 

4.1 Testing Results of the VGG16 Model 
  

The VGG16 model’s classification results, shown in Table 4, illustrate its ability to 

distinguish amongst autistic and non-autistic images. For the autistic children, the model 

attained an F1-score of 97%, precision of 100%, and a recall of 95%, demonstrating an 

exceptional ability to correctly identify autistic cases with no false positives and few false 

negatives. There were 97 images in support of the autistic class. In the non-autistic class, 

the model had an F1-score of 62%, a recall of 100%, and precision of 44%, indicating a 

greater rate of false positives despite accurately recognizing all non-autistic instances. The 

support for the non-autistic class was four images. 

Table 4: The testing classification results of the VGG16 model 

 Precision  Recall  F1-score Support Accuracy 

Autistic        100 95 97 97        

        95 Non-autistic        44 100 62 4 

Macro average         72 97 79 101 

 

The macro average calculation results for the F1-score, recall, and precision performance 

metrics were 72%, 97%, and 79%, respectively, across both classes. The overall accuracy 



 241                                                                         Utilizing Deep Learning Models …             

of the model was 95%, indicating a high proportion of correct predictions. These results 

highlight the model’s robust performance in detecting autism but also reveal a need for 

improvement in accurately classifying non-autistic cases. Figure 6 demonstrates the 

confusion matrix (CM) gained by the VGG16 model. 

 

 

 
Figure 6: A CM of the VGG16 model 

Figure 6 shows that the testing set contains 102 images, which are shown in a CM. Out of 

these images, 82 were accurately identified as non-autistic and four as autistic. However, 

five images were wrongly identified as autistic, resulting in false positives. Figure 7 

visualizes the performance metrics for the VGG16 approach. 

 
Figure 7: Performance metrics of the VGG16 model: a) training and validation 

accuracies, and b) model loss 

As shown in Figure 7, the validation accuracy confirmed a notable improvement, 

increasing from 55% to 80%, while the training accuracy showed a substantial rise from 

45% to 95%. Regarding the model’s loss, the training loss significantly decreased from 16% 

to 1.5%, and the validation loss was mitigated, reducing from 75% to 55%. 
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4.2 Testing Results of the Inceptionv3 Model 
 

This subsection presents the results of the Inceptionv3 model’s autism detection tests. 

These findings are critical for assessing the model’s test results and efficacy in 

differentiating between autistic and non-autistic children using facial expression traits. 

Table 5 displays the Inceptionv3 model’s categorization testing performance, with a focus 

on its ability to distinguish between autistic and non-autistic children by utilizing facial 

expression traits.  

 

 

Table 5: The testing classification results of the Inceptionv3 model 

 Precision  Recall  F1-score Support Accuracy 

Autistic        88 83 86 82        

        77 Non-autistic        42 53 47 19 

Macro average         65 58 66 101 

 

The model has a precision of 88% and 42% for the “Autistic” and “Non-autistic” categories, 

respectively, with recalls of 83% and 53%. Furthermore, the F1-scores were 86% and 47% 

for “Autistic” and “Non-autistic,” respectively. These measurements provide vital insights 

into the model’s capacity to reliably classify individuals based on facial expressions, which 

contributes to the progress of autism detection methods. Figure 8 gives the CM of the 

Inception model. 

                   

 
                                                    Figure 8: A CM of the Inceptionv3 model 

As can be seen in Figure 8, the testing set contains 102 images, which are shown in a CM

. Out of these images, 68 were accurately identified as non-autistic and 10 as autistic. Ho

wever, 14 images were wrongly identified as autistic, resulting in false positives, and nine
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 images were incorrectly predicted as non-autistic. Figure 9 displays the performance met

rics of the Inception model. 

 

 
Figure 9: Evaluation metrics of the Inceptionv3 model: a) training and validation 

accuracies, and b) model loss 

As shown in Figure 9, the validation accuracy saw a notable enhancement, increasing from 

68% to 70%, while the training accuracy showed a significant rise from 45% to 79%. 

Regarding the model’s loss, the training loss significantly decreased from 70% to 1%, and 

the validation loss was mitigated, reducing from 18% to 1%. 

4.3 Testing Results of the EfficientnetB0 Model 
 

This section presents the testing classification results of the EfficientNetB0 model for 

autism detection utilizing facial expression features, as shown in Table 6. The model had 

a precision of 100 for the “Autistic” class and 21 for the “Non-autistic” class. The recall 

scores were 89 for “Autistic” and 100 for “Non-autistic.” The F1-scores were 94 and 35 

for “Autistic” and “Non-autistic,” respectively. 

 

Table 6: Testing classification results of the EfficientNetB0 model 

 Precision  Recall  F1-score Support Accuracy 

Autistic        100 89 94 97        

        89 Non-autistic        21 100 35 19 

Macro average         61 94 65 100 

 

The overall accuracy of the model was 89. The macro average calculation and results for 

precision, recall, and F1-score were 61, 94, and 65, respectively. These metrics indicate 

the model’s high precision and recall for the “Autistic” class, although the performance for 

the “Non-autistic” class suggests there are areas for improvement. The EfficientNetB0 

model’s accuracy and other metrics provide insights into its potential effectiveness and 

limitations in autism diagnosis based on facial expressions. Figure 10 shows the CM of the 

EfficientNetB0. 
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Figure 10: CM of the EfficientNetB0 

As can be seen in Figure 10, 11 images were wrongly predicted as autistic, which resulted 

in false positives, and 86 images were correctly classified and predicted as non-autistic. 

Figure 11 depicts the learning curves of the EfficientNetB0 model. 

 

As shown in Figure 11, the validation accuracy shows a notable enhancement, growing 

from 68% to 79%, while the training accuracy showed a significant rise from 50% to 87%. 

Regarding the model’s loss, the training loss significantly decreased from 88% to 3%, and 

the validation loss was mitigated, reducing from 60% to 50%. 

 

5 Discussion  
 

ASD is a complicated neurodevelopmental disorder marked by complications with social 

contact, communication, and recurrent behaviors, requiring early and precise diagnosis for 

prompt interventions. In this research, the performance and results attained by the used DL 

models, namely, VGG16, InceptionV3, and EfficientNetB0, were evaluated using facial 

expression characteristics to detect autism. The VGG16 model attained the greatest 

Figure 11: The learning curves of the EfficientNetB0 model: a) training and validation accuracies, and b) model loss 
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accuracy, of 95%, having perfect accuracy for autistic persons, but struggled with non-

autistic individuals, indicating its high sensitivity but also a tendency to produce false 

positives. The InceptionV3 model performed moderately, with an accuracy of 77%, but 

there is tremendous opportunity for improvement, predominantly in minimizing false 

positives and enhancing non-autistic identification. The EfficientNetB0 model obtained 89% 

accuracy, outperforming InceptionV3 but not VGG16, with a strong capacity to identify 

autistic persons but low precision for non-autistic individuals, indicating many false 

positives. The VGG16 model, with 95% accuracy, is the most effective of the three, 

particularly in diagnosing autistic persons. However, the significant rate of false positives 

for non-autistic persons across all models suggests that sensitivity and specificity should 

be further refined and balanced. The InceptionV3 and EfficientNetB0 models, while 

demonstrating potential, show that there is substantial room for improvement in achieving 

reliable and balanced diagnostic performance. 

              Table 7 compares our study’s findings to those of previous studies on ASD 

detection using the Kaggle dataset. Previous tests found accuracies of 87% with MobileNet 

[56], 90% and 91% with Xception [57][58], and 92% with MobileNet-V2 [59]. Our 

suggested model, VGG16, attained a 95% accuracy rate, demonstrating its superior 

capacity to detect ASD using facial expression characteristics. This demonstrates how the 

VGG16 model surpasses other existing models using diagnostic accuracy. 

 

Table 7: Comparative analysis of our study results and those of previous research 

Ref Id Model Dataset Accuracy % 

[56] MobileNet Kaggle dataset 87 

[57] Xception Same  90 

[58] Xception Same  91 

[59] MobileNet-V2  Same  92 

Proposed  VGG16 Same  95 

 

 

 

7    Conclusion  

Studies have been performed to create computer systems that can help diagnose some 

neurodevelopmental abnormalities by analyzing photographs of faces, as facial 

morphology is known to be associated with brain developing issues. The main aim of the 

current study was to investigate several data-focused methods for diagnosing ASD 

utilizing advanced DL models, namely, VGG16, InceptionV3, and Efficientnet. The goal 

was to optimize the accuracy of predicting and diagnosing ASD. We employed the Kaggle 

ASD dataset, which includes 2940 images of different children and ages. Instead of 

prioritizing model and hyperparameter tweaking, our approach involved using 

augmentation and pre-processing strategies on the training set to identify the most efficient 

strategy for diagnosing ASD. After pre-processing and implementing a resampling strategy 

during training, the best performance was achieved. DL was utilized for each model 

examined in the study to attain superior outcomes to those of the original models. The 

VGG16 model, which is proposed for use, achieved the best accuracy, of 95%, and thus 

performed better than the other DL models. The suggested technique surpassed the 
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accuracy and computing cost of current cutting-edge models. The outcomes of this study 

indicate that DL applications have the potential to enhance the diagnosis process of ASD. 

Additional research is advised to enhance the efficiency of these models and verify their 

efficacy on a wider scope. 
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