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Abstract 

Information about some poverty indicators is important not only for the large 
administrative level but also for lower administrative level. This information can 
be obtained from many surveys. Unfortunately, many surveys are usually 
designed to satisfy accuracy for large populations. As a result, it is often 
encountered that the sample size from some sub-populations which can be 
obtained from a survey is too small to produce a reliable direct estimator. The 
sub-population which the selected sample from it is not large enough to produce 
a reliable direct estimator is also called a small area. In this paper, we propose 
the spatial empirical best predictor (SEBP) for some poverty indicators in some 
small areas. The SEBP is derived under a unit-level spatial lognormal mixed 
model which incorporates spatial dependence into the covariance structure. The 
mean square prediction error (MSPE) of the SEBP is estimated by the parametric 
bootstrap method. A simulation study was conducted to evaluate the performance 
of the SEBP compared to the direct estimates as well as the empirical best 
predictor (EBP). Further, the SEBP was also applied to obtain the estimates of 
some poverty indicators for some sub-districts in Bogor, Indonesia. The results 
showed that there is a substantial reduction in MSPE of the SEBP over the direct 
estimates and the EBP for almost all sub-districts.  

Keywords:  spatial dependence, spatial lognormal mixed model, small area 
parameter, small area estimation, Monte Carlo approximation. 

 

1 Introduction 

Surveys are usually designed to estimate some parameters for large areas or large 

populations. The sample size of some subgroups of a population which are not planned in 

the survey is often very small [1,2]. In this case, direct estimation will produce large 

standard error and hence is unreliable. A subgroup of a population from which the selected 

sample is not large enough to produce direct estimates with adequate precision is known 

as a small area [1,3]. The estimation techniques related to produce the small area 

parameters are called small area estimation (SAE) [1]. It is important to note that small 
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areas do not only refer to geographical context. They can be a subdivision of a large 

population which is defined by cross-classification of geographical areas and social-

economic or demographic characteristics such as age, sex, race [1,4].  

An empirical best linear unbiased prediction (EBLUP) is designed to estimate linear small 

area parameters, such as means or totals of variable of interest [1,5-7]. Some studies which 

extend the EBLUP to estimate nonlinear small area parameter, namely poverty indicators, 

have also been conducted [8-18]. These studies estimate some poverty indicators by 

assuming independence among small areas.  Some other SAE studies have been conducted 

by considering spatial dependence among some small areas [2,19-27]. These spatial SAE 

studies focus on estimating linear small area parameter, namely small area means. 

In this paper, we propose a spatial empirical best prediction (SEBP) which extends the 

empirical best prediction (EBP) in Molina and Rao [15] as well as Handayani et al. [28] 

by considering spatial dependence among small areas. The SEBP is proposed to estimate 

the FGT (stands for Foster, Greer, and Thorbecke) poverty indicators [29]. The SEBP is 

derived under a unit-level spatial lognormal mixed model in Handayani et al. [19], which 

extends the nested error unit level regression model [15] by incorporating spatial 

information into the random small area effect. The unit-level spatial lognormal mixed 

model assumes normality of the logarithm transformation of the variable of interest.  

The rest of this paper is organized as follows. Section 2 introduces a unit-level spatial 

lognormal mixed model.  The SEBP of FGT poverty indicators, that our proposed, are also 

provided in this section.  Section 3 discusses the uncertainty measure of the SEBP which 

is estimated by using parametric bootstrap techniques. Simulation studies to evaluate the 

performance of the SEBP are presented in Section 4. Application of the SEBP to predict 

the FGT poverty indicators for some sub-districts in Bogor Regency and Bogor 

Municipality in Indonesia is provided in Section 5. The conclusion follows in Section 6. 

2 The Spatial Empirical Best Prediction (SEBP) 

Consider a finite population 𝑈 with 𝑁  elements, divided into 𝑀  sub-populations called 

small areas. The population size of the 𝑖𝑡ℎ  small area is 𝑁𝑖, 𝑖 = 1.2…𝑀 , and the 

population size of 𝑈  is 𝑁 = ∑ 𝑁𝑖
𝑀
𝑖=1 . Suppose a random sample of size 𝑛𝑖  (𝑛𝑖 < 𝑁𝑖) is 

selected from 𝑖𝑡ℎ small area. Hence, the size of non-sampled observations from the 𝑖𝑡ℎ 

small area is 𝑟𝑖 = (𝑁𝑖 − 𝑛𝑖). Furthermore, the total sample size selected from 𝑈  is 𝑛 =
∑ 𝑛𝑖

𝑀
𝑖=1   and the total non-sampled size is 𝑟 = (𝑁 − 𝑛) = ∑ (𝑁𝑖 − 𝑛𝑖)

𝑀
𝑖=1 . The sampled 

elements of 𝑈 are denoted by 𝑠 and the non-sampled elements are denoted by �̅�. We also 

denote 𝑠𝑖  be the sample from area 𝑖 and �̅�𝑖  be the sample complement from area 𝑖, 𝑖 =
1.2…𝑀. 

The FGT poverty indicators for the 𝑖𝑡ℎ small area is [15,29]: 

𝑃𝑖𝛼 =
1

𝑁𝑖
∑ 𝑃𝑖𝑗𝛼 

𝑁𝑖

𝑗=1

;  𝑃𝑖𝑗𝛼 = (
𝑧 − 𝑦𝑖𝑗

𝑧
)
𝛼

𝐼(𝑦𝑖𝑗 < 𝑧) (1) 

where 𝑖 = 1,2, …𝑀;  𝛼 = 0,1,2; 𝑦𝑖𝑗  is the variable of interest which underlies the poverty 

indicators 𝑃𝑖𝛼 , such as income or expenditure, for unit 𝑗  within small area 𝑖,  𝑧  is the 

poverty line such that  𝐼(𝑦𝑖𝑗 < 𝑧) = 1  if 𝑦𝑖𝑗 < 𝑧  (a person is under poverty) and 

𝐼(𝑦𝑖𝑗 < 𝑧) = 0  if 𝑦𝑖𝑗 > 𝑧 (a person is not under poverty). For 𝛼 = 0 the FGT poverty 
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indicators called poverty incidence which represents the proportion of people under 

poverty. For 𝛼 = 1 and for 𝛼 = 2, the FGT poverty indicators are called poverty gap and 

poverty severity respectively. The poverty gap measures the intensity of poverty whereas 

poverty severity measures the severity of deprivation of people living in absolute poverty. 

The FGT poverty indicators  𝑃𝑖𝛼 (1) also can be decomposed as follows: 

𝑃𝑖𝛼 =
1

𝑁𝑖
{∑ 𝑃𝑖𝑗𝛼

𝑗∈𝑠𝑖

+ ∑ 𝑃𝑖𝑗𝛼

𝑗∈�̅�𝑖

} , 𝑖 = 1,2, …𝑀. (2) 

 

The second term of the right-hand side (2), the values of 𝑃𝑖𝑗𝛼 for non-sampled units, will 

be predicted under the unit-level spatial lognormal mixed model [19]: 

𝑦# = log(𝑦) = 𝑋𝛽 + 𝑍𝑣 + 𝑒 = 𝑋𝛽 + 𝑍(𝐼𝑀 − 𝜌𝑊)−1𝑢 + 𝑒 (3) 

where 𝑦# = (𝑙𝑜𝑔𝑦11, … , 𝑙𝑜𝑔𝑦1𝑁1
, … , log 𝑦𝑀1. . . log 𝑦𝑀NM

)
𝑇

is the  (𝑁 × 1)  vector of 

logarithm transformation of variable of interest 𝑦, which is assumed to follow normal 

distribution, 𝑋 = (𝑥𝑖𝑗1, 𝑥𝑖𝑗2, … 𝑥𝑖𝑗𝑝)
𝑇
, 𝑖 = 1,2, …𝑀 ;  𝑗 = 1,2, …𝑁𝑖 , is the (𝑁 × 𝑝) matrix 

of values of 𝑝 auxiliary variables which is assumed to be fixed , 𝛽 the (𝑝 × 1) the vector 

of model coefficients, 𝑣 = (𝐼𝑀 − 𝜌𝑊)−1𝑢  the (𝑀 × 1) vector of correlated random area 

effects which is assumed to follow an autoregressive process, namely simultaneous 

autoregressive process (SAR), 𝐼𝑀 is (𝑀 ×  𝑀 ) identity matrix, 𝑊 the (𝑀 ×  𝑀) weights 

or proximity matrix which measures the proximity among small areas, 𝜌  the spatial 

correlation coefficient which measure the strength of correlation among small areas,  𝑢  the  
(𝑀 × 1) vector of random area effects, 𝑒 the (𝑁 × 1) vector of sampling errors and 𝑍 the 

(𝑁 × 𝑀) design matrix of 𝑣 . There are many choices for proximity matrix 𝑊 [30]. In our 

research, we define the elements of proximity matrix 𝑊 as follows: 𝑤𝑖𝑗 is 1 if area 𝑖 shares 

an edge with area 𝑗 and 0 otherwise. On the other hand, we specify design matrix 𝑍 as 

follows: 

 

𝑍 =

[
 
 
 
 

MN

N

N

1000

010

001

2

1







]
 
 
 
 

. 

 

where 1𝑁𝑖
; 𝑖 = 1,2, …𝑀 column vector of ones which its size is 𝑁𝑖.  

The assumption for the vector of independent error terms 𝑢 is 𝑢 ~𝑖𝑖𝑑 𝑁(0, 𝐺 = 𝜎𝑢
2𝐼𝑀) and 

for the vector of independent sampling errors is given by 𝑒 ~𝑖𝑖𝑑 𝑁(0, 𝑅 = 𝜎𝑒
2𝐼𝑁). Thus, 

𝑣 = (𝐼𝑀 − 𝜌𝑊)−1𝑢 ~𝑁(0, 𝐷), 𝐷 =  𝜎𝑢
2[(𝐼𝑀 − 𝜌𝑊𝑇)(𝐼𝑀 − 𝜌𝑊)]−1 ,  𝑦#~𝑁(𝜇𝑦# , Σ𝑦#  ),

𝜇𝑦# = 𝑋𝛽, Σ𝑦# = 𝑍𝐷𝑍𝑇 + 𝑅.  𝐼𝑘  is the (𝑘 ×  𝑘) identity matrix. Note that the vector of 

sampling errors 𝑒 and the vector of error terms 𝑢 are mutually independent. 

Consider 𝑦# = log(𝑦)  can be partitioned into 𝑦# = (𝑦𝑠
#𝑇 , 𝑦�̅�

#𝑇)
𝑇

; 𝑦𝑠
# = log(𝑦𝑠) , 𝑦�̅�

# =

log(𝑦�̅�) and 𝑋 = (𝑋𝑠
𝑇 , 𝑋�̅�

𝑇)𝑇. In a similar vein, the mean vector 𝜇𝑦# is partitioned as 𝜇𝑦# =

(𝜇
𝑦𝑠

#
𝑇 , 𝜇

𝑦�̅�
#

𝑇 )
𝑇

 and the covariance matrix  Σ𝑦#  as Σ𝑦# = [
Σ𝑠𝑠 Σ𝑠�̅�

Σ�̅�𝑠 Σ�̅��̅�
]. Since 𝑦#  is normally 
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distributed with mean vector 𝜇𝑦# and covariance matrix  Σ𝑦# , the conditional distribution 

of 𝑦�̅�
# given the sample data 𝑦𝑠

# is given by Molina and Rao [15]:   

𝑦�̅�
#|𝑦𝑠

#~𝑁(𝜇�̅�|s, Σ�̅�|s) (4) 

𝜇�̅�|𝑠 = 𝜇�̅� + Σ�̅�𝑠Σ𝑠𝑠
−1(𝑦𝑠

# − 𝜇𝑠) (5) 

Σ�̅�|s = Σ�̅��̅� − Σ�̅�𝑠Σ𝑠𝑠
−1Σ𝑠�̅� (6) 

Note that: 𝜇�̅� = 𝑋�̅�𝛽 , 𝜇𝑠 = 𝑋𝑠𝛽,  Σ�̅�𝑠 = 𝑍�̅�𝐷𝑍𝑠
𝑇 , Σ𝑠𝑠 = 𝑍𝑠𝐷𝑍𝑠

𝑇 + 𝜎𝑒
2𝐼𝑛 , Σ�̅��̅� = 𝑍�̅�𝐷𝑍�̅�

𝑇 +
𝜎𝑒

2𝐼𝑟 , Σ𝑠�̅� = 𝑍𝑠𝐷𝑍�̅�
𝑇  , 𝐷 = 𝜎𝑢

2[(𝐼𝑀 − 𝜌𝑊𝑇)(𝐼𝑀 − 𝜌𝑊)]−1 is the (𝑀 ×  𝑀)  covariance 

matrix of 𝑣. 

 

Based on (3), we can obtain  

𝑦 = (𝑦11. … 𝑦1𝑁1
, 𝑦21. … 𝑦2𝑁2

, … . 𝑦M1
, 𝑦M2

…𝑦𝑀𝑁𝑀
)
𝑇

= exp(𝑦#) 

    =  𝑒𝑥𝑝(𝑦11
# . … 𝑦1𝑁1

# , 𝑦21
# . … 𝑦2𝑁2

# , … . 𝑦𝑀1
# . … 𝑦𝑀𝑁𝑀

# ) or  

 

𝑦𝑖𝑗 = exp (𝑦𝑖𝑗
#), 𝑖 = 1.2…𝑀, 𝑗 = 1.2…𝑁𝑖, so that 𝑃𝑖𝑗𝛼 in (1) also can be written  

𝑃𝑖𝑗𝛼 = (
𝑧 − 𝑒𝑥𝑝(𝑦𝑖𝑗

#)

𝑧
)

𝛼

𝐼(𝑒𝑥𝑝(𝑦𝑖𝑗
#) < 𝑧) = ℎ𝛼(𝑦𝑖𝑗

#). (7) 

 

Based on (7), it can be seen that 𝑃𝑖𝑗𝛼  is a function of 𝑦𝑖𝑗
#  . Thus, we can write 𝑃𝑖𝑗𝛼 =

ℎ𝛼(𝑦𝑖𝑗
#). 

The spatial best predictor (SBP) for FGT poverty indicators   𝑃𝑖𝛼 ,  denoted by �̂�𝑖𝛼
𝑆𝐵𝑃  is 

obtained  by minimizing the mean square error  𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐵𝑃) = 𝐸(�̂�𝑖𝛼

𝑆𝐵𝑃 − 𝑃𝑖𝛼)
2
. It will be 

given by the conditional expectation: 

�̂�𝑖𝛼
𝑆𝐵𝑃 = 𝐸𝑦�̅�

[𝑃𝑖𝛼|𝑦𝑠]. (8) 

 

The SBP of 𝑃𝑖𝛼 based on the decomposition (2) is: 

�̂�𝑖𝛼
𝑆𝐵𝑃 =

1

𝑁𝑖
{∑ 𝑃𝑖𝑗𝛼

𝑗∈𝑠𝑖

+ ∑ �̂�𝑖𝑗𝛼
𝑆𝐵𝑃

𝑗∈�̅�𝑖

}. (9) 

 

The second term of the right-hand side (9), �̂�𝑖𝑗𝛼
𝑆𝐵𝑃 , is the SBP of 𝑃𝑖𝑗𝛼 = ℎ𝛼(𝑦𝑖𝑗

#). It is given 

by: 

�̂�𝑖𝑗𝛼
𝑆𝐵𝑃 = 𝐸𝑦�̅�

[ℎ𝛼(𝑦𝑖𝑗
#)|𝑦𝑠

#] 

           = ∫ℎ𝛼(𝑦𝑖𝑗
#) 𝑓𝑦𝑖𝑗

#  (𝑦𝑖𝑗
# |𝑦𝑠

#)𝑑𝑦𝑖𝑗
# ; 𝑗 ∈ �̅�𝑖 

(10) 

 

where 𝑓𝑦𝑖𝑗
#  (𝑦𝑖𝑗

# |𝑦𝑠
#) is the conditional density of 𝑦𝑖𝑗

#  given vector 𝑦𝑠
#. 
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The conditional expectation (10) cannot be calculated explicitly because of the complexity 

of  ℎ𝛼(𝑦𝑖𝑗
#). We can approximate it empirically by Monte Carlo simulation. For this 

purpose, we can generate a large number 𝐿 of non-sampled vectors 𝑦�̅�
# from (4).  

Note that 𝑦�̅�
# = (𝑦11

# . … 𝑦1𝑟1
# , 𝑦21

# . … 𝑦2𝑟2
# , … . 𝑦𝑀1

# , 𝑦𝑀2
# …𝑦𝑀𝑟𝑀

# )
𝑇
.  Suppose 𝑦𝑖𝑗

#(𝑙)
; 𝑖 =

1.2…𝑀;  𝑗 = 1.2… �̅�𝑖 be the value of non-sampled observation 𝑦𝑖𝑗 which is obtained from 

the 𝑙𝑡ℎ simulation. The Monte Carlo approximation to the SBP of 𝑃𝑖𝑗𝛼 is given by: 

�̂�𝑖𝑗𝛼
𝑆𝐵𝑃 = 𝐸𝑦�̅�

[ℎ𝛼(𝑦𝑖𝑗
#)|𝑦𝑠

#] =
1

𝐿
∑ℎ𝛼(𝑦𝑖𝑗

#(𝑙))

𝐿

𝑙=1

.  

𝑖 = 1,2, …𝑀;  𝑗 = 1,2, … 𝑟𝑖    

(11) 

where ℎ𝛼(𝑦𝑖𝑗
#(𝑙)) is calculated from (7) using values of 𝑦𝑖𝑗

#(𝑙). 

In practice, the mean vector 𝜇 and covariance matrix Σ usually depend on vector unknown 

parameter 𝜃 = (𝜎𝑢
2, 𝜎𝑒

2, 𝜌)𝑇 .  The 𝜃 = (�̂�𝑢
2, �̂�𝑒

2, �̂�)𝑇  which is an estimator of 𝜃  can be 

obtained by using maximum likelihood (ML) or restricted ML (REML) method. Then, we 

will approximate (11) by generating 𝑦𝑖𝑗
#(𝑙)

 from (4) but 𝜃 = (𝜎𝑢
2, 𝜎𝑒

2, 𝜌)𝑇 is replaced by 𝜃 =

(�̂�𝑢
2, �̂�𝑒

2, �̂�)𝑇. The predictor of 𝑃𝑖𝑗𝛼 which is obtained by using the values of estimator 𝜃 =

(�̂�𝑢
2, �̂�𝑒

2, �̂�)𝑇 is called spatial empirical best predictor (SEBP), denoted by �̂�𝑖𝑗𝛼
𝑆𝐸𝐵𝑃. Finally, 

the SEBP of the FGT poverty indicators  𝑃𝑖𝛼 is given by: 

�̂�𝑖𝛼
𝑆𝐸𝐵𝑃 =

1

𝑁𝑖
{∑ 𝑃𝑖𝑗𝛼

𝑗∈𝑠𝑖

+ ∑ �̂�𝑖𝑗𝛼
𝑆𝐸𝐵𝑃

𝑗∈�̅�𝑖

} . (12) 

 

Generating 𝑀 multivariate normal vector 𝑦𝑖�̅� of size 𝑟i = (𝑁𝑖 − 𝑛𝑖) and repeating 𝐿  times 

may be unfeasible. Alternatively, at 𝑙𝑡ℎ simulation, the non-sampled  values of 𝑦𝑖𝑗
#  in 𝑖𝑡ℎ 

small area, denoted by 𝑦𝑖�̅�𝑖

#(𝑙)
, can be obtained by generating univariate normal 𝑢𝑖

∗(𝑙)
 and 

𝑒𝑖�̅�
∗(𝑙)

 independently, and then calculating the corresponding 𝑦𝑖�̅�
(𝑙)

  from the model: 

 

𝑦𝑖�̅�
#(𝑙)

= 𝜇𝑖�̅�|𝑠 + 𝑢𝑖
∗(𝑙)

+ 𝑒𝑖�̅�
∗(𝑙)

 (13) 

 

with 𝜇𝑖�̅�|𝑠  obtained from 𝜇�̅�|𝑠  in (5) for specific 𝑖𝑡ℎ  area, 𝑢𝑖
∗(𝑙)

~𝑁(0, �̂�1);  �̂�1 = 𝑍𝑖�̅� [�̂� −

�̂�𝑍𝑖𝑠
𝑇 (𝑍𝑖𝑠�̂�𝑍𝑖𝑠

𝑇 + �̂�𝑒
2𝐼𝑛𝑖

)
−1

𝑍𝑖𝑠�̂�] 𝑍𝑖�̅�
𝑇  and 𝑒𝑖�̅�

∗(𝑙)
~𝑁(0𝑟𝑖

, �̂�2);  �̂�2 = �̂�𝑒
2𝐼𝑟𝑖

. where 0𝑟𝑖
 is (𝑟𝑖 ×

 𝑟𝑖) null vector and 𝐼𝑟𝑖
 is (𝑟𝑖 × 𝑟𝑖) identity matrix. 

 

The covariance matrix of 𝑦�̅�|𝑦𝑠 , denoted by Σ�̅�#|𝑠#  (6), under the unit-level spatial 

lognormal model (3), corresponds to the covariance matrix of  𝑦𝑖�̅� which is obtained by 

generating 𝑢𝑖
∗ and 𝑒𝑖s̅

∗  independently under model (13). 
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3 The Parametric Bootstrap Estimator for the MSE of the 
SEBP 

The mean square error (MSE) of �̂�𝑖𝛼
𝑆𝐸𝐵𝑃 is given by: 

𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃 ) = 𝐸(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃 − 𝑃𝑖𝛼)
2
. (14) 

 

Because the FGT poverty indicators 𝑃𝑖𝛼 is a nonlinear parameter, it is difficult to derive 

the 𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃 ) analytically in [15].  Thus, by using parametric bootstrap, we estimate 

the 𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃 ). The steps to obtain the estimates of 𝑀𝑆𝐸(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃 ) are described below: 

1) Fit model (3) to the sample data (𝑦𝑠
#, 𝑋𝑠) and obtain the model parameter estimates �̂�, 

�̂�𝑢
2, �̂�𝑒

2, �̂�. 

2) Generate bootstrap random area effect 𝑢∗~𝑁(0, �̂�𝑢
2𝐼𝑀)  and sampling error 

𝑒∗~𝑖𝑖𝑑 𝑁(0, �̂�𝑒
2𝐼𝑁) using �̂�𝑢

2 and �̂�𝑒
2 obtained at Step 1. 

3) Construct the bootstrap population model using �̂�, �̂�, 𝑢∗, 𝑒∗,  the known proximity 

matrix 𝑊 and the population values of 𝑋 : 

 

𝑦#∗ = 𝑋�̂� + 𝑍(𝐼 − �̂�𝑊)−1𝑢∗ + 𝑒∗. (15) 

 

4) For the bootstrap model (15), generate 𝐵  bootstrap replications 

(𝑦#∗(1), 𝑦#∗(2) … . 𝑦#∗(𝐵)) and calculate the bootstrap population parameter 𝑃𝑖𝛼
∗(𝑏)

=
1

𝑁𝑖
∑ 𝑃𝑖𝑗𝛼

∗(𝑏)
;  

𝑁𝑖
𝑗=1  where  𝑃𝑖𝑗𝛼

∗(𝑏)
= ℎ𝛼(𝑦𝑖𝑗

#∗(𝑏)
); 𝑏 = 1,2, …𝐵. 

5) From each bootstrap replication 𝑏 in step 4,  take a sample with its size is similar to 

the original sample which is available at the survey data, then calculate the bootstrap 

SEBP, �̂�𝑖𝛼
𝑆𝐸𝐵𝑃∗(𝑏)

, 𝑏 = 1,2, …𝐵. as described in Section 2 using the bootstrap sample 

data 𝑦𝑠
#∗ , 𝑊 and 𝑋. 

6) The bootstrap estimator 𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃∗ ) = 𝐸{(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃∗ − 𝑃𝑖𝛼
∗ )}

2
 is approximated by 

 

𝑚𝑠𝑝𝑒(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃∗  ) =

1

𝐵
∑(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃∗(𝑏)
− 𝑃𝑖𝛼

∗(𝑏)
)
2

𝐵

𝑏=1

.  (16) 

Finally, the estimator (16) is used to estimate 𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃 ) given in (14). 

 

4 Simulation Studies 

To study the performance of the SEBP, we conducted a simulation study. We assume that 

all small areas in population 𝑈 are selected in the sample and that the sample model 

represents the population model, i.e. that there is no sample selection bias of small areas. 

The auxiliary variables that are used in the small area estimation do not always have an 

explicit causal relationship with the variable of interest (the dependent variable in the 

model). In the small area estimation context, auxiliary variables play the role of giving 

additional information that can explain changes in the variable of interest. In this research, 

simulation studies are designed by constructing a population which variable of interest as 

a function of auxiliary variables with random error. 
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The number of small areas is set at 45 (𝑀 = 45) and the range of sample size for each of 

the small areas is set up from 3 to 47. The small areas are arranged ascending based on its 

sample size (𝑛1 = 3, 𝑛2 = 4, 𝑛3 = 5 up to 𝑛45 = 47).  Sample sizes less than or equal to 

15 are considered “small”, between 15 and 30 “medium” and larger than or equal to 30 as 

“large”. Moreover, the sample sizes are set approximately 3% of the corresponding 

populations.  The area population size thus ranges between 100 and 1567, the total 

population is 𝑁 = 37500 and the total sample size  𝑛 = 1125. 

The variable of interest 𝑦𝑖𝑗 is assumed to follow a log normal distribution or 𝑦𝑖𝑗
# = log 𝑦𝑖𝑗 

follow normal distribution. The values 𝑦𝑖𝑗
#  are generated from model (3) using an intercept 

and one auxiliary information, that is 𝑥𝑖𝑗 = (1, 𝑥𝑖𝑗1)
𝑇
where the values of auxiliary variable 

are generated from 𝑥𝑖𝑗  ~ 𝑁(8,4) as well as from 𝑥𝑖𝑗  ~ 𝑁(6,9). The expectation of 𝑦𝑖𝑗
#  with 

𝑥𝑖𝑗  ~ 𝑁(8,4) will be the same as the expectation of 𝑦𝑖𝑗
#  with 𝑥𝑖𝑗  ~ 𝑁(6,9). However, the 

distribution of 𝑦𝑖𝑗  based on 𝑥𝑖𝑗  ~ 𝑁(6,9)  has a longer tail (heavily skewed) than 

𝑥𝑖𝑗  ~ 𝑁(8.4). The intercept and the regression coefficient of the auxiliary variable are 𝛽 =

(2,1)𝑇 . For the cut off value of 𝑧𝑖𝑗, we follow [15] and is fixed at 𝑧𝑖𝑗 = 0.3 ∗ median(𝑦𝑖𝑗).  

The matrix 𝑊 is the contiguity matrix which is kept fixed for all simulations. The elements 

of 𝑊 is specified by 𝑤𝑖𝑗 = 1 if small area 𝑖 shares an edge with small area 𝑗 and 𝑤𝑖𝑗 =

0 otherwise.  The maximum number of neighbours for each area is restricted and equal to 

5, and the 𝑊 matrix was standardized by row. The elements of 𝑊 which its dimension 
(45 ×  45) is given by: 

𝑊 =

[
 
 
 
 
 

0 1/5 1/5 1/5 … 0
1/3 0 1/3 0 … 0
1/4 1/4 0 1/4 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … 1/4
0 0 0 0 … 0 ]

 
 
 
 
 

 

 

The random area effects   𝑣  and sampling errors 𝑒  are generated independently from 

𝑣~𝑀𝑉𝑁(0,  𝜎𝑢
2[(𝐼𝑀 − 𝜌𝑊)(𝐼𝑀 − 𝜌𝑊𝑇)]−1) and 𝑒~𝑁(0,  𝜎𝑒

2) with 𝜎𝑢
2 = 0.09 and 𝜎𝑒

2 =
0.25. The spatial correlation coefficients 𝜌  are 𝜌 = 0, 0.25, 0.50, 0.75 and 0.90.  Each of 

the five values of 𝜌  is combined with the two sets of 𝑋  variables: 𝑋~𝑁(8,4)  and 

𝑋~𝑁(6,9). As a result, there will be ten synthetic (simulated) populations. The parameters 

that are set up in our scenario simulation are like to our previous research [19]. 

A set of sample indices 𝑠𝑖 with sample size 𝑛𝑖 is proportional to its population is drawn 

independently in each area 𝑖  using simple random sampling without replacement. The 

values of the auxiliary variable for the population units and the sample indices 𝑠𝑖 were kept 

fixed over all Monte Carlo simulations. Then, we generate 𝐾 = 500  Monte Carlo 

population vectors 𝑦𝑖𝑗
#  from the true model. For each Monte Carlo population 𝑘, for 𝑘 =

1,2, …𝐾, the following quantities were computed: 

1) The true parameter for each area 

𝑃𝑖𝛼
(𝑘)

=
1

𝑁𝑖
∑ 𝑃𝑖𝑗𝛼

(𝑘)
 ; 𝑖 = 1,2, …𝑀

𝑁𝑖
𝑗=1 ; 𝛼 = 0,1,2    

where 𝑃𝑖𝑗𝛼
(𝑘)

 is: 
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𝑃𝑖𝑗𝛼
(𝑘)

= (
𝑧−𝑦𝑖𝑗

(𝑘)

𝑧
)

𝛼

𝐼(𝑦𝑖𝑗
(𝑘)

< 𝑧), 𝑦𝑖𝑗
(𝑘)

= 𝑒𝑥𝑝(𝑦𝑖𝑗
#(𝑘)

), 𝑗 = 1, 2, …𝑁𝑖 .      

2) Direct estimates of 𝑃𝑖𝛼 for each area 𝑖 using the sampled part  𝑦𝑠
#(𝑘)

 of the 𝑘𝑡ℎ  vector 

population 𝑦#(𝑘): 

�̂�𝑖𝛼
𝐷𝐼𝑅(𝑘)

=
1

𝑛𝑖
∑ 𝑃𝑖𝑗𝛼

(𝑘)
 ; 𝑖 = 1, 2, …𝑀

𝑛𝑖

𝑗=1

 

3) Using the sampled part 𝑦𝑠
#(𝑘)

, Monte Carlo approximation of the EBP of 𝑃𝑖𝛼  were 

computed with 𝐿 = 50 replicates. 

4) Model (3) was fitted to the sample data (𝑦𝑠
#(𝑘)

, 𝑋𝑠) for each population 𝑘 . Then, 

substituting the estimated model parameters in (5) and (6), 𝐿 = 50  out-of-sample 

vectors 𝑦�̅�
#(𝑘𝑙)

, 𝑙 = 1.2…𝐿 were generated from the conditional distribution (4) using 

(13). The sample data 𝑦𝑠
#(𝑘)

 is attached to the generated out-of-sample 𝑦�̅�
#(𝑘𝑙)

 to form 

a population vector 𝑦#(𝑘𝑙) . The small area parameter 𝑃𝑖𝛼  is calculated from each 

population 𝑦#(𝑘𝑙) as follows: 

𝑃𝑖𝛼
(𝑘𝑙)

=
1

𝑁𝑖
{∑ 𝑃𝑖𝑗𝛼

(𝑘)

𝑗∈𝑠𝑖

+ ∑ 𝑃𝑖𝑗𝛼
(𝑘𝑙)

𝑗∈�̅�𝑖

} , 𝑖 = 1, 2, …𝑀 

where for 𝑗 ∈ 𝑠𝑖 . 𝑃𝑖𝑗𝛼
(𝑘)

 was already obtained in (1), while for non-sampled units 𝑗 ∈ �̅�𝑖, 

𝑃𝑖𝑗𝛼
(𝑘𝑙)

 is calculated as: 

𝑃𝑖𝑗𝛼
(𝑘𝑙)

= (
𝑧 − 𝑦𝑖𝑗

(𝑘𝑙)

𝑧
) 𝐼(𝑦𝑖𝑗

(𝑘𝑙)
< 𝑧),  𝑦𝑖𝑗

(𝑘𝑙)
= 𝑒𝑥𝑝(𝑦𝑖𝑗

#(𝑘𝑙)
), 𝑗 ∈ �̅�𝑖. 

Then, the SEBP of FGT poverty measure 𝑃𝑖𝛼 was calculated for each small area 𝑖 as: 

�̂�𝑖𝛼
𝑆𝐸𝐵𝑃(𝑘)

=
1

𝐿
∑𝑃𝑖𝛼

(𝑘𝑙)

𝐿

𝑙=1

 

5) Calculate the means over the  Monte Carlo populations 𝑘 = 1,2, …𝐾 of true values, 

design-based, EBP and SEBP outcomes as: 

𝐸(𝑃𝑖𝛼) =
1

𝐾
∑ 𝑃𝑖𝛼

(𝑘)

𝐾

𝑘=1

, 𝑖 = 1,2, …𝑀 

6) Similarly, bias over Monte Carlo populations of DIR (direct estimates), EBP and 

SEBP along with the corresponding MSE are calculated using the formula that is given 

in the Table 1.  

Table 1.  The Formula of Bias and MSE for Direct, EBP and SEBP  

 Bias MSE 

Direct  𝐵𝑖𝑎𝑠(�̂�𝑖𝛼
𝐷𝐼𝑅) = 𝐸(�̂�𝑖𝛼

𝐷𝐼𝑅) − 𝐸(𝑃𝑖𝛼) 𝑀𝑆𝐸(�̂�𝑖𝛼
𝐷𝐼𝑅) = 𝐸(�̂�𝑖𝛼

𝐷𝐼𝑅 − 𝑃𝛼𝑖
)
2
 

EBP  𝐵𝑖𝑎𝑠(�̂�𝑖𝛼
𝐸𝐵𝑃) = 𝐸(�̂�𝑖𝛼

𝐸𝐵𝑃) − 𝐸(𝑃𝑖𝛼) 𝑀𝑆𝐸(�̂�𝑖𝛼
𝐸𝐵𝑃) = 𝐸(�̂�𝑖𝛼

𝐸𝐵𝑃 − 𝑃𝑖𝛼)
2
 

SEBP  𝐵𝑖𝑎𝑠(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃) = 𝐸(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃) − 𝐸(𝑃𝑖𝛼) 𝑀𝑆𝐸(�̂�𝑖𝛼
𝑆𝐸𝐵𝑃) = 𝐸(�̂�𝑖𝛼

𝑆𝐸𝐵𝑃 − 𝑃𝑖𝛼)
2
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The following Table 2, Table 3 and Table 4 report the mean (and median) of relative bias 

and the mean (and median) of relative RMSE of FGT poverty indictors P0, P1, and P2 

respectively which are estimated by Direct, EBP and SEBP method. It can be seen from 

the Table 2, Table 3 and Table 4 that the mean (and median) of relative bias of P0, P1, and 

P2 which is estimated by Direct, EBP as well as SEBP are approximate to zero for all of 

ten simulated populations. Subject to the relative RMSE, the mean (and median) of relative 

RMSE of P0, P1, and P2 which is estimated by SEBP is the smallest, relative to the Direct 

and EBP method for all of ten simulated populations. 

Table 2.  Mean (Median) of Relative Bias and Mean (Median) of Relative RMSE of P0 

over area for ten simulated populations for Direct, EBP and SEBP  

 
 

 

Table 3.  Mean (Median) of Relative Bias and Mean (Median) of Relative RMSE of P1 

over area for ten simulated populations for Direct, EBP and SEBP  
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Table 4.  Mean (Median) of Relative Bias and Mean (Median) of Relative RMSE of P2 

over area for ten simulated populations for Direct, EBP and SEBP  

 
 

The graphs of relative bias and relative RMSE of P0, P1, and P2 which are estimated by 

Direct, EBP and SEBP using simulated data with small variance are provided in Appendix 

1. On the other hand, Appendix 2 presents the estimates of P0, P1, and P2 based on 

simulated data with large variance. The relative bias of P0, P1, and P2 which are estimated 

by Direct, EBP and SEBP method are quite well (close to zero). However, the fluctuation 

of relative bias of P0, P1, and P2 which is estimated by EBP and SEBP tend to be more 

stable than Direct estimation method.  The relative RMSE for Direct estimates of P0, P1, 

and P2 is the largest, compared to EBP and SEBP for all the conditions (small, medium, 

and large) spatial dependence. The RMSE of Direct estimates of P0, P1, and P2 will 

decrease as sample size increases where the RMSE of EBP and SEBP tend to be stable (it 

is not affected by sample size of area). The RMSE of Direct, EBP and SEBP coincided 

(similar) for the area with large sample, namely area 29th until area 45th. 

 

5 Application  

In this section we apply the methodology outlined above to estimate the FGT poverty 

indicators for some sub-districts in Bogor, Indonesia. Particularly. we apply the SEBP and 

evaluate it to the EBP and direct estimates (DIR) to estimate the FGT poverty indicators. 

Bogor is one of the regions in the Province of West Java, Indonesia. Bogor is divided into 

two administrative areas: Bogor Regency and Bogor Municipality. Each of the two areas 

consists of several sub-districts. In the data that we analyze, there are 39 sub-districts in 

Bogor Regency and six sub-districts in Bogor Municipality.  A sub-district consists of 

some villages. The status of a village could be urban or rural. Information of the status of 

a village is available from the Potensi Desa/PODES (2008 Village Potential). In addition 

to PODES data, we also utilize data from Survey Sosial Ekonomi Nasional/SUSENAS 

(2007 National Socioeconomic Survey) to obtain information about the monthly household 

per capita expenditure. The SUSENAS data has been designed to allow accurate estimation 

of poverty indicators at regencies or municipalities level but not at the lower level.  
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The variable of interest 𝑦𝑖𝑗  is per capita monthly expenditure of a household-𝑗 in sub-

districts-𝑖 on basic needs (food and nonfood). Figure 1 (i) shows that 𝑦𝑖𝑗 does not follow a 

normal distribution. However, 𝑦𝑖𝑗
# = log(𝑦𝑖𝑗) approximately follow normal distribution, 

as shown in Figure 1 (ii). 

 
               (i)           (ii) 

 

Figure 1. (i) Histogram of 𝑦𝑖𝑗 and (ii) histogram of  𝑦𝑖𝑗
# = log(𝑦𝑖𝑗)  

 

According to [31], households in urban villages tend to have higher expenditures on basic 

needs than households in rural villages. Hence, in our research, the status of a village (rural 

or urban) where the household is located, is used as auxiliary information to predict the 

poverty measures. 

The average number of households for 45 sub-districts in Bogor is 28,480 and the average 

number of households that was selected as a sample is approximately 40, which is only 

0.14 % of its population size. The sample size of households for the 45 sub-districts in 

Bogor ranges from 16 (2.22) to 144 (33%).  

As a measure of spatial dependence among the districts, we use the first-order contiguity, 

given by the (45 ×  45) matrix 𝑊 with 𝑤𝑖𝑗 = 1, if sub-district 𝑖 shares an edge with sub-

district 𝑗 and 0 otherwise. Furthermore, the weights are row-normalized such that the sum 

of row elements is 1. The poverty line for the Province of West Java, where Bogor Regency 

and Bogor Municipalities are located, for the period January-December 2007 is IDR 

180,821 for households in urban villages and IDR 144,204 for households in rural villages. 

 

To obtain the EBP and SEBP of the FGT poverty measures, we generated 500 Monte Carlo 

𝑟𝑖 = (𝑁𝑖 − 𝑛𝑖) non-sampled 𝑦𝑖𝑗 values. For the spatial dependence case, the 𝑦𝑖𝑗 values are 

generated according to model (3), otherwise according to nested error regression model in 

[15]. Based on the generated values and the sampled values that we have from survey data, 

we calculate the direct (DIR), EBP and SEBP of P0, P1, and P2 for each sub-district. The 

results of estimates are presented in Table 4. Furthermore, the boxplots in Figure 2 also 

depict the results. 

 

 



 

D. Handayani et al.,   114 

Table 4.  DIR. EBP and SEBP Estimates of P0, P1, and P2 for the districts in Bogor 

Regency and Bogor Municipality 

 

 
Note: Observations 1-39 belong to Bogor Regency and observations 40-45 belong to Bogor Municipality. 

 

Figure 2 shows that the length of the boxplots for Bogor Regency are longer than for Bogor 

Municipality indicating that the variability of the poverty measures in the former is larger 

than in the latter. Furthermore, Figure 2 shows that the median for all poverty indicators 

P0, P1, and P2 obtained by all three estimators (DIR, EBP and SEBP) for Bogor Regency 

are larger than for Bogor Municipality. Table 4. However, shows that sub-district Cibinong 

(observation no 27), one of the sub-districts in Bogor Regency has the estimates of all three 

poverty measures are close to the corresponding poverty indicators of Bogor Municipality. 
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Moreover, all the estimates of P0, P1, and P2 in Cibinong are very small compared to those 

for the other sub-districts in Bogor Regency. This is because of most of status of villages 

in sub-district Cibinong are urban. Moreover, Cibinong is also the capital of Bogor 

Regency. 

 

From Table 4 it follows that there are 15 sub-districts that have zero P0, P1, and P2 DIR 

estimates indicating that there is no household under poverty in these sub-districts. 

However, given their socioeconomic conditions, the 0 % estimates are highly unlikely. The 

EBP and SEBP estimates for these sub-districts are far more realistic than the DIR 

estimates because they are larger than zero. Note that the P0, P1, and P2 DIR estimates are 

zero in the 15 sub-districts because no household sampled in these sub-districts has income 

below the poverty line. 

 

 
 

Figure 2.  Boxplot of Direct Estimator (DIR), EBP and SEBP of P0 (i). P1(ii) and P2 

(iii) in Bogor Regency (Kab. Bogor) and Bogor Municipality (Kota Bogor) 

 

Figure 3(i) and Figure 3(ii) shows a geographical pattern of P0_SEBP for some sub-

districts in Bogor Regency and Bogor Municipality respectively. The sub-district in Bogor 

Regency which has the smallest P0_SEBP is Cibinong (around 8%). It is located in the 

north (“black area”) in Figure 3(i). Sukamakmur, the sub-district in Bogor Regency, which 

has the largest P0_SEBP (around 17%), is located in the south-east (“yellow area”). On the 

other hand, the sub-district in Bogor Municipality which has the largest P0_SEBP is South 

Bogor, and the smallest is North Bogor. The P0_SEBP among sub-districts in Bogor 

municipality are similar (around 8%). 

 

The direct estimates of P0 for some sub-districts in Bogor Regency, particularly 

Leuwiliang (40.63%), Leuwisadeng (12.5%), Pamijahan (53.13%), Cibungbulang 

(31.25%), Ciampea (18.75%), Tenjolaya (25%) and Dramaga (12.5%) are different widely 

from the others, although they are quite similar in terms of socio-economic characteristics. 

These sub-districts form a cluster of first-order contiguous sub-districts, and they are “far 

away” from the central business district. The range of EBP estimates of P0 for the sub-

districts in Bogor Regency mentioned above is also large but its range is narrower than for 

the DIR estimates. Particularly, it ranges between 10 % and 36 %. Finally, the SEBP 

estimates of P0 for these sub-districts are relatively similar, around 14 %. This outcome is 
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in line with Statistics Indonesia (2008) which shows that in 2007 the average P0 estimate 

for Bogor Regency was 13.10% and for Bogor municipality 9.47%. Similar results are held 

for P1 and P2 estimates, which is shown in Table 4. To conclude, the SEBP is an 

improvement on EBP which in its turn is an improvement on direct estimates (DIR). 

 

  

(i) (ii) 

Figure 3. Spatial pattern of the P0_SEBP for Sub-Districts in Bogor Regency and 

Bogor Municipality  

 

6 Concluding Remarks  

In this study, we propose spatial empirical best predictor (SEBP) to estimate small area 

nonlinear parameter, namely poverty indicators. We use a parametric bootstrap method to 

estimate the MSE of the SEBP. Our simulation results indicate that the SEBP, in 

comparison with direct estimates and empirical best predictor (EBP), shows outstanding 

performance in term of bias and mean square error for all of the simulation scenarios. 

For all the spatial correlation coefficient that we investigate whether in small variance 

condition as well as large variance condition, the SEBP has consistency of bias for small 

sample size as well as for large enough sample size. The RRMSE of SEBP is always 

smaller than direct estimates as well as EBP for all the simulation scenarios.  

We apply the SEBP to estimate poverty indicators (poverty incidence, poverty gap and 

poverty severity) for 39 sub-districts in Bogor Regency and six sub-districts in Bogor 

Municipality, Indonesia. The results show that the SEBP performs well while it is 

compared to the EBP and the direct estimates.  

Although we have developed the SEBP to estimate small area nonlinear parameters, 

specifically poverty measures, its application is not restricted to this area. The SEBP also 

could be applied to produce small area linear parameters such as small area means of 

monthly household per capita expenditure. 

In this study, we derive the SEBP of poverty indicators by assuming that the variable of 

interest which underlies the poverty indicators has positively skew distribution and it will 

follow normal distribution after applying logarithm transformation. In other words, the 

variable of interest follows log normal distribution. In many cases, however, it is possible 

to encounter that the variable of interest has positively skewed distribution, but it does not 

follow log normal distribution. Regarding to this condition, for the future research, it is 

interesting for specifying other skewed distribution, for example generalized beta 
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distribution of the second kind (GB2), which is more flexible than log normal distribution 

[32]. Otherwise, whenever variable of interest has skewed distribution, it is also interesting 

to find other transformation besides logarithm transformation, such that the result of 

transformation will have symmetric (normal) distribution. 

 

We have estimated the MSE of SEBP of nonlinear small area parameter, specifically 

poverty indicators, by bootstrap parametric. Because of the intensive computing problem, 

we still have not evaluated the performance of the MSE estimates of the SEBP for 

nonlinear small area parameter. For the future research, it is necessary to make an efficient 

program simulation so that the performance of MSE estimates can be assessed. 
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Appendix 1. The Graph of Relative Bias and Relative MSE for 

FGT Poverty Measures for Skewed Data with Small Variance  
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Appendix 2. The Graph of Relative Bias and Relative MSE for 

FGT Poverty Measures for Skewed Data with Large Variance 
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