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Abstract 

Spatial co-location patterns refer to a set of distinct spatial features often 
found in proximity over a study region. Spatial co-location pattern mining is 
a process of discovering co-location patterns in global and local regions. 
However, this relationship of co-occurrence is not uniformly observed. That 
is, few patterns are discovered at global regions but are not found at local 
regions and vice versa.  Such pattern discovery is based on a single prevalent 
threshold value in various previous research works. Moreover, this single 
prevalent threshold would not be suitable to detect maximal patterns globally 
and locally. Alternatively, it would either miss certain patterns globally or 
locally due to non-uniform distribution of data instances. To discover the 
spatial co-location patterns, this paper presents a prevalent region mining 
algorithm to mine spatial co-location at global and local regions based on 
distribution of data. Additionally, the effectiveness of this algorithm is proven 
by comparing with various other state of art algorithms. The algorithm is 
implemented and evaluated on synthetic and real dataset. 

Keywords: Co-location, grid structure, Haversine distance, neighborhood.  

1.  Introduction 

In the digital age, with the proliferation of smartphones, Internet of Things (IoT) 

devices and global positioning system and numerous applications running on them 

has led to generation of large-scale Spatio-temporal data. This tremendous data offers 

new opportunities and challenges for analysis and making intelligent decisions. 

mailto:swati.meshram@computersc.sndt.ac.in
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Spatial and Spatio-temporal data has a particular interesting type of pattern named as 

Co-location [1]. For instance, {Residential, Super market, Bank} is a pattern where 

co-existence among the facilities is commonly observed to leverage the 

interdependence relationship for their advantage. The colocation pattern discovery is 

defined as identification of objects that exist together globally as entities or are 

commonly found together in a specific local geographical area. Exploration of 

interdependence relationship among the location-based objects puts forth socio-

economic domain insights. Spatial co-location mining has been applied in the 

domains such as urban resource planning and retail [2], public health [3], crime 

analysis [4] and road network analysis [5], etc. 

Traditional co-location pattern mining [6] methods had applied joins [7-9] and 

association rules like Apriori [10] and FPgrowth [11] along to obtain co-location 

patterns and utilized prevalence measures for the mining process. These methods 

required excessive storage and large computational capability to generate co-location 

patterns. With increase in the feature set of data resulted into redundant patterns 

generation and increased search space. Some methods adopted clique based search to 

determine co-location patterns which is a time consuming process as it is a NP-hard 

problem. They give optimal result but are found unsuitable due to higher complexity 

of the method. Moreover, co-location patterns are found to be prevalent based on 

threshold. Measures based on single prevalence threshold could lead to omission of 

certain rare but important patterns. Such pattern’s significance is higher in local 

region but lower at the global level. Existing methods treat these patterns equally 

whose significance is computed merely based on a single distance threshold value and 

without considering data distribution across the regions. Data distribution is the 

spread of the data in the region. The distribution indicates the reach of the data which 

may be clustered or spread, which needs to be handled differently at global and local 

level without losing the neighborhood relationship between the objects. 

We propose prevalent regions to capture the neighborhood relationship based on 

data distribution in the region. The method is important as its weighted measure of 

prevalence is not merely based on counting of instances but the closeness distance 

between the instances captures the weight age of the region. To make the computation 

efficient and minimal we use the concept of grid structure along with the density on 

standard real point of interest spatial data and spatio-temporal boids dataset. 

Our contribution in this research paper is outlined as follows: 

 We propose a prevalent region mining algorithmic framework for 

discovering spatio-temporal co-location mining to identify patterns for 

varied data distribution based on neighborhood. 

 We adopt a grid structure to explore the co-location patterns. 

 We propose a weighted method to efficiently filter the co-location patterns 

and estimate the importance of the co-location rules. 

 The weighted prevalent region co-location mining method is implemented 

and evaluated for correctness over synthetic and real spatial dataset. 
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    We list the structure of our paper as; section 2 discusses the relevant literature. 

Section 3 covers the basic framework model proposed in methodology. Section 4 

discusses the output and results with its interpretation in discussion. Finally, section 5 

gives the conclusion of the work carried out. 

2. Related Work 

Shashi Shekhar and Huang et.al [6] introduced co-location mining and proposed a 

measure of usefulness or interestingness of the patterns using a metric named as 

participation index (PI). It is the minimum ratio of every feature participating in the 

candidate pattern. And a candidate co-location pattern becomes prevalent if its 

participation index is higher than the prevalent threshold. Then join-based [7], partial 

join[8] and join-less[9] methods to discover spatial co-location patterns were 

conceptualize. Although the traditional methods were simple techniques of computing 

local and global density whose computations were merely based on counting the 

instances similar to Apriori [10] and Fp-growth [11] algorithms etc. These algorithms 

adopt association rule mining methods to filter the instances after joining. The 

Clustering [12] approach for co-location was adopted, which clusters the regions of 

high density to form co-location patterns. That results in over counting or 

undercounting of data instances and generation of extensive patterns. These methods 

relied on time consuming tests for patterns based on counting and ignore the 

importance of the regions. Depth-first traversal and CPI-tree structure were the 

alternatives techniques to the traditional join-based methods [13]. Celik et.al [14] 

adopted a quad tree based structure for partitioning the study area and gave a Zoloc-

miner algorithm. In [15] a k-nearest neighbor method for hierarchical partitioning of 

the spatial space has been adopted.  

Further the work of discovering co-location pattern were carried out to be based on 

determining clique-based neighborhood instances [16-18]. The instances which could 

not fit in clique-based neighborhood were discovered by star neighborhood instances 

to make the search easier and less complex. Selection of co-location patterns required 

to determine the prevalence of such candidate co-location patterns for each 

participating feature. These methods of partitioning, clique based and star 

neighborhood-based techniques in large data sets led to high memory consumption, 

high computational complexity, and back tracking. 

V. Trans et.al [19] had applied Delaunay triangulation scheme for generation of 

neighbors participating in the CP. This method was a distance threshold free method, 

which is an efficient technique with a shortcoming of excessive triangulation 

generation of edges and filtering. Another research work by Li.et.al. [3], adopted grid 

based transact ionization along with buffer overlay method to discover co-location 

patterns. The other approach of co-location pattern mining based on clustering [20-

21], which groups neighbors closer to selected centroids formed clustering colocation 

patterns in spatial domain. 
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Spatial and Spatio-temporal instances are found in the Earth’s continuous space. 

Due to the absence of discrete closed boundaries in space, existing techniques takes 

additional time in searching co-located object instances. They require to store large 

number of co-location instances in memory before pruning. Measures based on single 

prevalence threshold could lead to omission of certain rare but important patterns. 

Existing methods treat these patterns equally whose significance is computed merely 

based on a single distance threshold value and without considering data distribution 

across the regions. Data distribution is an emphasis on how the data is located in the 

region. The distribution indicates the reach of the data which may be clustered or 

spread, which needs to be handled differently at global and local level. We need to 

detect prevalent regions [28], the regions of interest with data distribution which is 

higher locally and is condensed or spread locally but may not be realized or identified 

with a single global distance threshold to limit the search space. With increase in 

volume and complexity of location data, there is a need of simpler and effective 

approach for co-location pattern analysis in broader socio-economic landscape. Table 

1 presents the review of recent works in the field of co-location pattern mining of 

spatial data.  

3. Methodology 

 

Figure 1: The proposed framework for spatial co-location pattern mining. 

The outline of the proposed framework is given in the Fig.1. First step is to input 

the spatio- temporal data, map it to grid structure. Select the high density regions. 

Find the mean centers and spatial bandwidth of the regions. Compute the weights of 

the regions and generate prevalent regions with higher weight threshold. Prune the 

lesser prevalent regions and transform the remaining prevalent regions as co-location 

patterns. The framework is hybrid as it utilizes grid structure and density based 

strategy. 

A spatial-temporal dataset comprises of location records representing spatial 

coordinates of the instances(Im) or events, time of the event along with its non-spatial 

attributes called as a feature or facility. A collection of distinct features observed in 

the study area contribute to form a feature set F = {f1, f2, ..., fn}. A Spatio-temporal 

co-location pattern is a set of features that are distinct and are in the neighborhood 
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relationship given as CP = {f1, f2, ..., fk} where k ≤ n, represents the size and f ∈ F. 

Any instance Ir could be a neighbor of an instance Im, if the spatial distance between 

the given instances is less than the distance threshold and time difference between the 

 

Table 1. Review of recent co-location pattern mining approaches. 

Refer

ence 

Approaches Method Limitations and Remarks 

 [17] Clique based 

co-location 

Metric - Critical Distance 

computation, Neighborhood -

Star and Clique 

Higher complexity. 

Clique generation- NP hard 

problem 

[19] Delaunay 

Triangulation(

DT) based Co-

location 

DT based neighborhood Requires more storage space as for 

the same three vertices, three times 

DT triangle are stored. Complexity 

is higher. 

[22] Sliding 

window 

FP-Growth generation, Area 

neighborhood relationship. 

Suitable for extended objects, 

buffer overlap, cell operations. 

Metric – Minimum participation 

index 

Not parallel method. 

 [23] Fuzzy co-

location  

Fuzzy membership, k-nearest 

neighbors, cliques. Metric – 

Relative distance and Fuzzy 

prevalence index. 

High complexity 

 [25] Regional 

partition based  

Partition distance threshold, core 

based nearest affiliation 

neighborhood. Metric – core 

participation index 

Efficiency dependents on core 

features selection. 

[26] Branch – 

depth 

extension 

Loss-utility based pruning  User defined threshold, parallelism 

for concurrent execution required. 

[27] Multi density 

and Maximal 

Clique based 

co-location 

Local Partitioning strategy Effectiveness on region 

partitioning 

[29] Weighted 

directed graph 

of network 

Metric -Network based 

prevalence index. 

High complexity. 

 [30] Clique based 

co-location 

IDS and NDS tree, Euclidean 

distance clique. Metric- 

Neighborhood distance threshold 

Large storage space required. 

 [31] Multi-level 

co-location 

Metric Global PI, Local PI, 

Prevalent regions. Apriori 

generation of co-location. 

High complexity 
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two events is less than given temporal threshold. Spatio-temporal neighborhood 

relationship is given as,  

 m
(I ) | _ ( , ) _ _ ( , ) _

r
r m m r

NR I spatial dist I I distance threshold temporal dist I I temporal threshold    
(1)

 

The spatial distance in the above equation is Haversine distance and given by the 

formula:  
2 2

2 1 2 1 2 1tan 2 .arcsin sin ( ) cos( ).cos( ) sin ( )dis ce R lat lat lat lat lon lon     (2) 

 

where (lat1, lon1), (lat2,lon2) refer to the spatial coordinates of the two points locations 

under comparison. ‘R’ refers to the Earth mean radius = 6371 km and distance is the 

Haversine distance.  

Then the participation ratio for fi in CP gives the number of instances of fi 

participating in CP to the total number of instances of feature type fi. The measure 

participation index PI of a co-location pattern CP is the minimum participation ratio 

among every feature participating in CP, given as PI(CP) = argminⱯfi∈ CP {PR (CP, 

fi )}. This measure participation index represents the interestingness of the pattern CP 

and is called as prevalence measure. 

We propose four novel algorithms to extract prevalent regions on spatial and spatio 

temporal dataset for co-location pattern mining. 

 

3.1 Grid Formation and Instance Mapping:  

 

As there is absence of closed boundaries, search space is continuous and to minimize 

the comparison based on distance, we place a logical grid which limits the distance 

for comparison. A logical grid formed by the intersection of latitudes and longitudes. 

This network of squares forms a spatial or geographic grid and individual square is 

known as a grid cell. The grid cells density is defined as a measure of the total 

number of data points in it. Given a set of instances Im,in the grid space ‘G’with grid 

cells as {G1,G2…, Gi}. Computation of grid cells density given by: 

 

Im( ) ( )i Gi mDensity G count I                                                                     (3) 

 

 

Algorithm 1: Grid formation and Grid cell density 

Step 1: Obtain minimum and maximum Cartesian coordinates to form spatial grid. 
_ min( . )

_ min( . )

_ max( . )

_ max( . )

i

i

i

i

Min X I X

Min Y I Y

Max X I X

Max Y I Y

 

 

 

 

    (4) 

Step 2: Create necessary hash map and arrays for the grid to obtain the density of grid 

cells. 
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( , )

_ [][]

Grid createhashmap

Grid Density

 


    (5) 

Step3: Assign data instances to grid and compute density of grid cells 

    

   1

( )

(

   I  I 

               .   Min_X  /  

              .   Min_Y /

            .

            _   

)

m

m

m

m

For each instance do

i x

j y

Grid i j append

GridCell Density

I

i

I

I

j





 

 

 

   (6) 

Step 4: Compare grid cells density with min_density threshold and mark true for 

higher density and false to drop the cell.  

  
  

  

    

                  

                 _

                  _   _

                 _

)

   

For each i in do

For each j in do

Grid Cell i j false

If GridCell Density i j min density

Grid Cell i j true











   (7) 

Step 5: Return Grid, GridCell_Density,Grid_Cell 

 

3.2 Prevalent Regions: 

 

Prevalent regions are defined as the regions of interest locally and/or globally due 

occurrence of instances which form neighborhood and the spread is limited by spatial 

bandwidth. The computation of weight is based on difference of distance space and 

time among mean center and instances with respect to the spatial and temporal 

bandwidth. Here, the difference between the mean center temporal interval or period 

and instances Im temporal interval is given as  

  m

m

1 I . . 0
_ I . , .

0

r

r

if T I T
temporal dist T I T

otherwise

  
  
 

(8) 

 

Those grid cells whose weighted average is higher than the weight threshold are 

formed as prevalent regions as the distribution of instances is concentrated with 

minimum distance. 

Algorithm 2: Generate prevalent regions and candidate co-location patterns. 

Step 1: Computation for grid cells greater than threshold density and determine the 

mean center of grid cell and spatial bandwidth ‘hs’. 

 

1

      :

  _  

(

_ ( _

  :

  _  _

)
1

,

_

Gi

i

Density

Gi m m i Gi

m

Gi

m

Gi

For each interval T of timeset do

For each Grid Cell of Grid do

If the GridCell Density G min density then

continue

entre I I G entre
Density

Radius avg spat t

c NR

l

c

ia is

I

d

 




  



 

( , ))_ Gi

Gis

ance entre Im

h Radi

c

us





(9) 
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Step 2:   Compute the Weighted average prevalence index of region to find 

prevalence of region. 

 

_

2 2

2 2

_
exp( ) ( )

( 1)

_
S TS T

Gi
m i

m mGi Gi

s T

centre
I G

c centre I entre I
W exp

h n h


 

 

 
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 


P P P P
(10) 

 

Step 3: _ ;
Gicentre THIf W W then continue   

_ Gicentre THIf W W then   

i
PRegion PRegion G U (11) 

_ GiCentres Centres centre U  

Step 4:  Generate Candidate Co-location patterns for prevalent regions.  

m iFor each I G do  

_(| | )Gi m GiIf entre I Rad hc ius t en    

 ( . )m iIf I f not in CCP G then  

  ( ) .i i mCCP G CCP G I f U     (12) 

      iSort CCP G  

Step 5: Return CCP  

 

Now, generation of candidate patterns is performed for the prevalent regions. To 

make the patterns compact by removal of redundant features and mapping to the 

similar class of patterns using hash search is required for efficient storage and 

retrieval. We aim to reduce the size of patterns, for repeated feature types. 
 

Algorithm 3: Generate spatial co-location patterns by mining prevalent regions. 

Step 1:  
1

      

   .

k

k

While CCP is not empty do

Remove redundant neighbour features



 

Step 2:   kgenerate hash CCP  

Step 3: 

 

  
 

 

     

       

        ,

         ,  

  ;

k

k

i

i

if hash CCP not in hashmap then

hashmap key hash CCP

hashmap value G T

else

append hashmap value G T

k







 

 

Step 4:  

      

     

       . .k k

for each key in hashmap do

HC hash CCP append count hash CCP value
 

Step 5:  
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 kDisplay CCP  

Step 6:    Stop  

 

Algorithm 4 constructs a tree, for sequence of temporal intervals.Generate temporal 

sequence from hashmap( CCPK) key and value list from all temporal intervals in  

hash map. For every node in the tree recursively call the node and visit, display the 

nodes and keep on visiting its child nodes to obtain the temporal sequence of features. 

 

Algorithm 4: 

Step 1:  
1 

    k

k

While CCP is not empty do


 

  KSequence hashmap CCP  

Step 2: CurrentNode root  

Step 3: 

  

  

    

            .  

             . , 1

     

             . , 1

For every element in Sequence

If the element not in CurrentNode Children then

Append CurrentNode Children element count

Else

Update CurrentNode Children element count





 

Step 4: 

 

   

 

/ /        

 . _ :

      _ , ,

   _ . , 1,

k

s

k

Generate a Subsequence temporal tree for each CCP

if Node T count temporal threshold

Output temporal sequence CCP display pattern Node level count

display pattern child node level count







 

Step 5: Stop  

 

4. Results and Discussion 

4.1 Dataset 

Table 2: Dataset Details  

Dataset  Type Records Features 

Synthetic Spatial 

Synthetic 

1000 Education, Financial Institution, Insurance, 

Healthcare, Hotel, Retail, Residential 

ShenzhenPOI Spatial  

Real Standard 

40000 A to M  

POI Spatial  

Real standard 

40000 Populated places, monuments, educational 

institutions, airports, glaciers etc 

Boids spatio-

temporal 

Standard 

200 boids x 

2500 records 

200 boids 

 

 



223                                                      Effective Maximal Co-location Pattern Mining… 
 

4.2 Experimental Setup 

 

The proposed algorithm is implemented in python 3.11.7 in Anaconda navigator 

v2.4.0 Jupyter notebook 7.0.8 on Windows 10 operating system. 

 

The temporal bandwidth hT is set to 1 temporal unit (e.g. one day or interval).It was 

run on all the listed datasets given in table 2. 
 

 
Table 3: Result of proposed algorithm based on weighted prevalence, POI dataset. 

Grid Cell/ 

Region ID 

Average 

Distance 

Weight Neighbors Pattern 

4597941 2.76878 0.33448 2 A, A 

4524668 4.51984 0.15611 3 C,C 

4621772 4.66085 0.04489 2 B,E 

4736431 3.09666 0.80010 11 C,D,E,F,G 

4689900 3.28451 0.85127 17 C,D,E,F,H,J,R 

4643261 2.23211 0.95610 28 B,C,D,E,F,G,I,L 

4596650 2.72356 0.91037 20 A,D,E,F,G,H,K,M,N 

4625395 3.17191 0.58888 5 B,E,G,I,J 

4514346 1.91838 0.90019 9 E,G,H,L,Q 

4707799 2.67034 0.62164 4 D,E,H 

5041662 3.10190 0.79950 11 A,D,E,G,H,I,J,P 

4654068 3.75380 0.63473 8 D,E,F,G,H,N 

5034594 0.72640 0.92739 2 C,F 

4714990 3.95465 0.8023 18 B,C,D,E,G,H,J,K 

4991601 4.37005 0.27994 4 A,C,D 

4539408 3.16567 0.51268 4 C,E,L 

4804320 2.56182 0.88751 14 B,C,D,E,F,I,L,N 

4693495 3.26695 0.91421 30 C,D,E,F,G,H,I 

4403223 2.21778 0.85328 8 A,D,F,H,I 

 

Table 3 presents the result on POI dataset based on the proposed weighted prevalence 

method. It includes various patterns from size – 2 to more size of neighbors often 

found. We observe that the method is able to generate patterns of bigger size. So we 

call the method as maximal, yet it is able to eliminate redundancy by sorting the 

features and dropping the repeated features. Fig 2.  shows the comparison of 

proposed method with tradition methods as Apriori and Clustering. These methods 

generate more patterns due to over counting and redundancy while the proposed 

weighted method eliminated the unnecessary generation of candidate patterns. 

Reducing the computation and pruning process. 
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Figure 2: Comparison of traditional Apriori, 

clustering based and proposed weighted prevalence 
region method on spatial data on synthetic dataset. 

Figure 3: Comparison of number of Instances of 
Shenzhen POI dataset on runtime based on fuzzy co-
location[23] and proposed weighted prevalent region 

algorithm. 

  
Figure 4: Runtime vs Instances plot on POI data 

 
Figure 5: Gridcellsize vs patterns ploton POI data 

 

 
Figure 6: Spatio-temporal maximal co-location on the boids dataset 

 

4.3 Evaluation Measure 

 

The evaluation measure used for testing the algorithms are runtime of the algorithms 

and prevalence index.The prevalence index and weight of prevalent regions.  

Prevalence Index for a pattern C is given as 
 

𝑃𝑖(𝐶) = 𝑚𝑖𝑛𝑓𝑖∈𝑐{𝑝𝑟(𝑓𝑖  , 𝐶)}                                       (14) 

 

Where Pr is the participation ratio of the pattern C involving feature fi. 
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Table 4: Comparison of proposed algorithm weight measure with traditional PI measure. 

 Top Patterns Weight of Prevalence Region Prevalence Index 

{A,C,D,E,F,G,H,I} 0.92 0.348591549 

{A,C,F,G,H,K,L} 0.67 0.235915493 

{B,C,D,G,I} 0.59 0.207746479 

{C,D,G,H,I} 0.35 0.123239437 

{B,D,G} 0.24 0.084507042 

 

Table 4 clearly indicates that the prevalence index measure is based purely on 

counting of the occurrences of features proximity, whereas the weighted prevalence 

measure is based on regional presence of the feature types and distance between the 

neighbors. So this measure would not miss any rare patterns occurring globally and 

locally. We the patterns that have negative weight values are pruned. 

 

Effect of dataset size on runtime: As figure 3 shows, as the data instances are 

increased to the fuzzy co-location algorithm [23], it takes more runtime which is 

exponential time due to fuzzy maximal grid clique generation for each instance. With 

less number of data instances for co-location, less number of maximal fuzzy grid 

cliques is constructed. As dataset size is increased, the runtime increases 

exponentially.  This is due to the reason that fuzzy algorithm involves k-nearest 

neighbors, and fuzzy grid-cliques computation which majorly rises exponentially 

with increase in dataset size. However, the weighted prevalence region runtime 

increases linearly. It takes very less time than the fuzzy co-location algorithm because 

the proposed algorithm does not compute cliques and Delaunay triangle, which 

require more processing time and extra storage for duplicate triangles and cliques. 

But we incorporate the grid cell partitioning into the prevalent regions and weight 

computation of prevalent region. Figure 4 shows the increase in number of instances, 

the runtime increases moderately and linearly. 

 

Effect of Grid-Cell Size: The grid cell size 'λ' used for experiment were 0.1, 0.2, 0.3, 

0.4, 0.5,1 degree. The bandwidth was set to 2 km for the experiment. We observe that 

with grid cell size as 0.1 degree, types of patterns identified were 434. With increase 

in grid cell size as 0.2 and further to 0.3, 0.4 degrees, the types of patterns increased 

to 560 and 648. But the number of weighted prevalent regions for the same patterns 

were reduced as can be seen for pattern type 'A,A'.  This relates to the fact as more 

instances could fit in a grid cell leading to change in patterns or are expanded. If we 

further increase and make the grid cell size 1 degree we find that the types of patterns 

are reduced to 580, this is due to the fact that the search circumference increases 

leading to more features in a pattern, consequently reducing redundant patterns. 

Figure 5, shows the impact of the grid cell size on number of patterns found in the 

given data. Figure 6, shows the spatio-temporal boids that are being often co-located 

with other boids. The grid size limits the maximum distance to be considered for 

comparison for boids to be co-located often in time. 
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Effect of bandwidth hs: The bandwidth is the indicator of spread of data instances. 

By limiting the spread bandwidth which is smaller than the grid size, helps in 

providing the concentrated or high-density regions. And the clusters formed do not 

take all the instances of the grid and the shape of grid. Rather will be formed from the 

cluster centre and constrained on the bandwidth for weight computation. In the 

experiment we initialized the bandwidth as the distance threshold with 2km. By 

setting it to 1km was computing weights that were large negative values even for the 

average distance 3.73 km, and 0.0005 weights for the average distance 2.75 km and 

when the bandwidth was 3km resulted to weight of 0.65 for 2.70km and 0.46 weights 

for 3.59km.  By setting the bandwidth to 2km, prevalence weight of the region was 

computed as 0.26 for average distance 3.06km, 0.35 for 2.70km, 0.55 for 2.03 km. 

and 0.88 for 0.91km. This setting gave better result. 

 

Effect of Distance and Weight threshold: The distance threshold was initialized to 

the 3 km. When it is assigned a small value, it results into very less patterns generated 

when higher than 3km results in inclusion of more patterns. When the weight 

threshold value is small in the range of 0.01 to 0.1, it is found that the run time of the 

algorithm is reduced. As we increase these parameters the algorithm takes more time 

as more data instances would be required to be stored in the hash map leading to 

overall increase in algorithm run time. 

 

Relationship of weight and average distance: Large region weight and large 

average distance indicates the distribution of data is spread across the grid cell i.e 

region. If the weight of the grid cell or region is small and average distance is large, 

describes the distribution of data is spread over larger area and the proximity between 

the neighboring instances is they are less likely to become neighbors. If the weight 

within the grid cell is high and average distance is small represents that the data 

instances are clustered. Weight is representation of density and average distance is 

representation of spread of data, is clustered or scattered. 

 

5. Conclusion and Future Works 
 

We have proposed a spatio-temporal grid structure based weighted prevalent region 

to mine co-location patterns. The dropping of grid cells technique with less density 

regions helps in reduced computation. Prevalent regions formed are the regions with 

higher data distribution with minimal distance leading to higher weights. Weights are 

a measure of importance of the co-location along with its size. It is demonstrated that 

grid size is important in number and size of patterns that would be generated. If the 

grid size is too small, it leads to small size of patterns become formed. If the grid size 

is too large would lead to less number of bigger patterns. The reason is wider reach of 

instances in the grid cell and inclusion of maximal types along with redundancy 

would lessen the number of distinct types of co-location patterns generated. The 

bandwidth which limits the spread of the instances and regions provides high density 

regions. And the clusters formed do not take all the instances of the grid and the 
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shape of grid. Rather will be formed from the cluster centre and constrained on the 

bandwidth for weight computation. The experimental evaluation with the dataset- 

birds, Shenzhen POI, synthetic have shown our algorithm is relatively effective with 

parameter settings. Our algorithm could be adjusted with other parameter settings to 

obtain more number of co-location patterns.  

 

Our proposed method is effective and is distinct from other methods as it not based 

on only counting of instances and supporting it by frequency. Nor the computations 

are based on fuzzy notion neither do we employ nearest neighbour searching for all 

the instances which takes up major computation time. We utilize the grid structure 

division of the study area so that long distance computations should not be carried 

out. We reduce the computations by using the notion of density which signifies 

whether the region should be further analysed if it is densely populated. The 

prevalence or importance of the region is provided by the weightage of the region. 

The weighted prevalence region is truly based on the scope of data spread, radius and 

density. Further our technique is simple and does not involve large computations 

reducing the complexity of the algorithm like as is done in case of cliques’ search. 

We use efficient data structure like hashmap and tree for storage of results and faster 

retrieval. Most other papers distance calculation is based on Euclidean distance 

formula. Our approach is based on Haversine distance formula which is more 

practical as it considers the curvature of the Earth in computations. 

Further work could be carried out to optimize the proposed algorithm for efficient 

retrieval and generation of compact patterns. We plan to include threads for parallel 

execution and enhance scalability. Better design of data structures could be 

considered for overall improvement of the algorithm and propose an alternative to 

distance threshold. 
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