
DOI: 10.15849/IJASCA.241130.15

Received 14 September 2024; Accepted 20 November 2024

Int. J. Advance Soft Compu. Appl, Vol. 16, No. 3, November 2024

Print ISSN: 2710-1274, Online ISSN: 2074-8523

Copyright © Al-Zaytoonah University of Jordan (ZUJ)

Wingsuit Flying Search Optimization Algorithm

Strategy for Combinatorial T-Way Test Suite

Generation

Nurol Husna Che Rose[1], Rozmie Razif Othman[2], Hasneeza Liza Zakaria[3], Anjila

J Suali[4],and ZA Ahmad[5]

[1][2][3][4]Advanced Computing, Centre of Excellence (CoE), Universiti Malaysia Perlis,

Malaysia

e-mail:husnarose@unimap.edu.my[1] , rozmie@unimap.edu.my [2],

hasneeza@unimap.edu.my[3], anjilajsuali91@gmail.com[4];
[5]Faculty of Electronic Engineering Technology (FTKEN), Universiti Malaysia Perlis,

Malaysia

e-mail:zahari@unimap.edu.my[5]

Abstract

Advancement in software development has resulted in complex software
applications that encompass various functional and non-functional
requirements. Such a complex system usually consists of many inputs either
directly from users or from other connected systems or devices. Here, there is
a potential for the system to go wrong due to certain combinations of inputs.
Combinatorial Testing (or T-Way Testing) is effective in tackling the issue.
Numerous studies have proposed strategies in generating T-Way test suite,
and current trend indicates that researchers often incorporate metaheuristic
algorithms in their proposed strategies. Many recent studies employ parameter
optimization algorithms such as (Whale Optimization Algorithm, Particle
Swarm Optimization, Gravitational Optimization Algorithm) in generating an
optimized T-Way test suite. Often, researchers need to tune the parameters
involved in the algorithm before the algorithm can be used for test suite
generation. Since the system under test (SUT) can come in various numbers
of input, it is impossible to find a single best value for every algorithm
parameter. As a result, this paper proposed a T-Way Test suite generator
utilizing Wingsuit Optimization Algorithm (a parameter free optimization
algorithm) for combinatorial test suite generation. The algorithm learnt by
itself as the optimization process progresses and hence eliminates the need for
control parameters. Statistical analysis shows that WFS produces a smaller
test suite compares to most T-Way strategies and in some cases, the difference
between test suite size produce by WFS and other T-Way strategies are
insignificant.

Keywords: Combinatorial testing, Optimization Algorithm, T-Way test suites, Wingsuit
Flying Search Algorithm

mailto:husnarose@unimap.edu.my
mailto:rozmie@unimap.edu.my%20[2
mailto:hasneeza@unimap.edu.my

 273 Wingsuit Flying Search Optimization…

1. Introduction

The swift evolution of technology as well as increasingly complex systems to satisfy human

needs and wants require systems to operate efficiently and systematically. A complex

system certainly involves numerous interactions between various parameters and is also

susceptible to faults and data interaction errors. Therefore, software testing has been

recognized as one of the important stages in the software development life cycle. It plays a

crucial role for quality assurance, minimizing errors and reducing costs in software

development [1]. While exhaustive testing is ideal for examining all potential parameter

combinations, this approach is often impractical due to its time-consuming nature,

particularly for large and excessively complex systems.

From literature, many researchers suggest the used of combinatorial testing (often refers as

T-Way testing where t denoted interaction strength) as the replacement of exhaustive testing

for multi-parameters system testing. T-Way testing efficiently reduces the number of test

cases by excluding tuples comprising combinations of parameters that are covered by a

single test case at most[2] . The research on T-Way testing is still progressing and recent

trend shows that researchers often employed metaheuristic optimization algorithm in

generating T-Way test suite. Various strategies have been introduced by researchers which

include Particle Swarm Optimization (PSO), Harmony Search (HS), Cuckoo Search (CS),

Flower Strategy (FS), Artificial Bee Colony (ABC), Ant Colony System (ACS), Dragonfly

Algorithm, Adaptive Teaching Learning Based Optimization (ATLBO), Whale

Optimization Algorithm (WOA), Gravitational Search Algorithm (GSA), Sine Cosine

Algorithm (SCA) and many more. These strategies reported to produce an optimal T-Way

test suite in many benchmark experiments.

However, according to the No Free Lunch Theorem, no algorithm works best for all possible

situation or system configurations. Hence, the integration of optimization algorithms into

T-Way testing remains an ongoing and open research endeavor. Motivated by the above

problem, this paper introduces a newly developed algorithm called the Wingsuit Flying

Search (WFS), which was design in 2020.

The WFS algorithm is a unique global optimization method based on population dynamics

and features stochastic search behavior. Inspired by the extreme sport of wingsuit flying, it

emulates the flier's objective to reach the lowest point of the terrain, analogous to finding

the global minimum in the search space.

Apart from the population size and the maximum number of iterations, this approach offers

the advantage of being parameter-free. Additionally, its ability to optimize different sections

of the search space independently makes it suitable for parallelized computation [3].

Furthermore, it is considered a simple and lightweight algorithm. While traversing the

search space, WFS can rapidly converge on the global optimal solution of the objective

function at hand. An extensive computational investigation, encompassing 30 classical and

10 CEC 2020 benchmark functions, showcases the promising capabilities of the WFS

algorithm, as it consistently outperforms competing methods across various scenarios [4].

Consequently, WFS has been widely utilized to tackle complex optimization problems

across diverse fields, including energy management [5], [6] network communication [7],

and condition and fault monitoring [8]. As a new metaheuristic algorithm, it appears the

Nurol Husna Che Rose et al. 274

potential of WFS is not fully explored since the T-Way implementation is not utilized in the

algorithm. So, this work has 2 main contributions which are: -

1. the design and implementation of WFS algorithm as the optimization algorithm in T-

Way test suite generation.

2. evaluation and comparison of the performance of WFS in generating T-Way test suite

across various benchmark experiments.

The organization of this paper is structured as follows: Section 2 discusses related works on

T-Way strategies. Section 3 provides background information on the combinatorial T-Way

testing strategy. Sections 4 introduce the Wingsuit Flying Search (WFS) Algorithm and its

implementation in T-Way testing. Section 5 presents preliminary results and discusses the

benchmarking outcomes. Finally, Section 6 concludes this research.

2. Related Work

In general, there are two strategic approaches in T-Way testing which are computational

and metaheuristic. The computational-based method is flexible approach derived from the

algebraic method. It uses pure computational strategies to construct the test case. The

strategies adopting computational can be categorized into two categories which are one-

parameter-at-a-time (OPAT) or the one-test-at-a-time (OTAT) strategy approach.

The OPAT strategy employs both horizontal and vertical extension techniques to generate

a test suite for a T-Way combination. First, OPAT starts with the initial pair parameter of

the system input [9]. Then, it expands horizontally by adding one parameter at each step by

prioritizing the parameter that covers the most tuples. The expansion process continues

iteratively until all tuples are covered. However, if there are remaining uncovered tuples,

OPAT will extend a new test case vertically. IPOG and IPOG-D is among the algorithms

that employ the OPAT approach.

Another testing strategy is the OTAT strategy. It constructs a test suite by integrating a

single test case that covers the maximum number of tuples at once. Uncovered tuples are

addressed by including the next test case and this process repeats iteratively until all tuples

are covered. The tool that utilizing OTAT involves Jenny, Pairwise Independent

Combinatorial Testing (PICT) and Test Configuration (TConfig).

Apart from the computational approach, there is also another strategy to produce a T-Way

test suite by using the metaheuristic approach. Metaheuristic algorithms often mimic diverse

sources of inspiration, such as natural phenomena or behaviors[10]. In general,

metaheuristic strategies may begin with either a single or population-based random solution.

Then, a search space technique either exploration or exploitation is iteratively applied in

attempt to improve them. During each iteration the fitness for each population point is

calculated and the best candidate solution is selected and added to the final test suite.

Metaheuristic can be categorized based on their source of inspiration which is biological or

science-inspired.

The examples of biological-inspired metaheuristics include Cuckoo Search (CS), and.

Artificial Bee Colony Strategy (ABC), Migrating Bird Optimization (MBO). For science-

inspired metaheuristics and hybridization algorithms include the QLearning Sine Cosine

 275 Wingsuit Flying Search Optimization…

Algorithm (QLSCA), Graph Based Greedy Algorithm (GBGA), Genetic Strategy (GS),

Flower pollination algorithm (FPA) and Improved Jaya Algorithm (IJA).

One of the first strategies to use the OPAT approach is the in-parameter-order (IPO) strategy

[11]. It is a pairwise strategy (two-way) based on vertical and horizontal extension. It starts

by creating a test set for pairs of the first two parameters. Then, it expands the test set to

include pairs of the first three parameters, and continues this process until all parameters are

covered. If necessary, it will then perform a vertical extension to address any uncovered

interactions to address general T-Way support with variant algorithms for optimizing the

horizontal and vertical extension. The strategy was later developed into IPOG [12] and

IPOG-D [13] which handle general T-Way interactions and optimize both horizontal and

vertical extensions.

Then, [14] develops TConfig (Test Configuration) that builds test suites using a recursive

process based on orthogonal arrays. Although useful, orthogonal arrays are typically only

applicable in tiny configurations. Thus, computationally based techniques that enable very

big configurations have attracted a lot of interest.

On the other hand, in 2008, Czerwonka developed the test suite generating technique named

Pairwise Independent Combinatorial Testing known as PICT [15]. It is extensively

employed by Microsoft for the purpose of software testing. PICT first creates all potential

tuples and designates each one as uncovered. The tuples involved in any restrictions

declared by the test engineer will be marked as excluded. Next, using the greedy heuristic

strategy, one uncovered tuple will be chosen and continued until it is completed. The

completed test case will be added to the final test suite, and the tuples it addresses will be

marked as covered. This process will keep going until all tuples are covered.

Next, Jenkins introduced a deterministic T-Way generation approach known as 'Jenny' [16].

Jenny utilizes a greedy algorithm to construct a test suite incrementally. In Jenny, each

feature has its own T-Way interactions to cover. It starts with one-way interactions (single

features), then moves to two-way interactions (combinations of two features), and so on.

This means that while one feature covers two-way interactions, another begins working on

three-way interactions, and this continues until all interactions are covered in the test suite.

Another computational algorithm is Particle Swarm Optimization (PSO). It was first used

in T-Way testing in 2010 to generate a test suite. The Particle Swarm Test Generator (PSTG)

[17], mimics the cognitive abilities observed in fish schools and flocks of birds when they

search for food. Each member within flocks and schools progresses towards both the most

favorable individual position and the optimal global positions. Each time a test case is

randomly generated, the velocity is adjusted based on the best test case discovered so far.

The particle then progresses to the next improved location and generate the best test case.

This process continues until all termination criteria are met. PSO then managed to produce

a new variant include DPSO [18] and APSO[19]. The Mamdani-type Fuzzy Inference

System (FIS) and Particle Swarm Optimization are hybridized to create adaptive particle

swarm optimization (APSO). FIS is used to maximize PSO's parameters.

The Cuckoo Search (CS) are motivated by certain birds' brood parasitic behavior such as

the Ani and Guira cuckoos. By increasing the search in nearby areas of the current solution

and effectively exploring the whole search area with the use of levy flights, CS offers the

Nurol Husna Che Rose et al. 276

best possible balance between local intensification and global diversification. In 2015, CS

was adapted in T-Way [20] by tuning the nest size, the elitism probability, and the

repetition parameter.

Then, Migrating Bird Optimization (MBO) was implemented for test data generation in

2016 by [21]. The MBO method looks for the finest test cases by utilizing the energy-saving

habits of various long-distance flying birds through neighborhood search. The two unique

aspects of MBO are the benefit-sharing system and parallel solution processing to minimize

number of test suite.

Meanwhile. Genetic Strategy (GS)[22] is a version of GA that modifies the crossover and

mutation operators. By modifying the bit structure and providing fast access to test cases,

GS enhances the fitness function's performance. The modifications and the reduction of

GA's complexity in the suggested GS reduce the size of the test suite and speed up its

creation.

Consequently, Flower Pollination Algorithm (FPA) is inspired by the pollination behavior

of flowering plants. It is a process of transferring pollen grains from the male part of one

flower (anther) to transferred to the female part (stigma) of another flower by pollinators

such as insects, birds, or wind. In 2017, [23] adopts FPA in T-Way named Pairwise Flower

Strategy (PairFS). This efficient method with lesser control parameters shows best result in

generated pairwise test suite size.

In addition, the Artificial Bee Colony Strategy (ABC) is adopted in T-Way. ABC was

created by mimic the eating habits of a colony of honey bees. Honey is represented as test

cases and the high-quality honey serve as the test cases with maximum covered interaction

element. The Artificial Bee Colony Strategy (ABCVS) is a two-way generation strategy

based on the Artificial Bee Colony (ABC) algorithm for a uniform and variable strength test

suite [24].

Also, Kidney Algorithm (KA) simulates the function of the kidneys in a living organism.

Filtration (local search) and reabsorption (global search) are the two primary steps of KA.

To provide a reduced test suite, the Pairwise Kidney Strategy (PKS) was created based on

KA in 2018[25]. Urine formation in KA occurs through four primary mechanisms. These

procedures include filtration, reabsorption, secretion, and excretion. Solutes and water from

the blood are moved to the kidney's tubules in the filtration process. It separates filtered

blood (FB) as good solution and waste group (W) for worse solution (local search). The

second phase, known as reabsorption, functions as a global search in which test cases in

(W) are reevaluated and sent back to FB. Then, in the secretion phase, test cases that have

been added to FB are then reviewed, and the test case that has inadequate quality coverage

is returned to W. Lastly, test cases in W are eliminated and replaced with newly created test

cases during the excretion process.

The Sine Cosine Algorithm (SCA) and the Q-learning algorithm are combined to form the

Q-learning Sine Cosine Algorithm (QLSCA)[26]. Instead of using a reward and penalty

system to determine the best course of action during runtime, the SCA switching probability

method is replaced with the Q-learning technique. To further improve the solution diversity

and enable jumping out of local optima, the Lévy flying motion and crossover are

incorporate into the QLSCA.

 277 Wingsuit Flying Search Optimization…

The Graph Based Greedy Algorithm (GBGA) is a competitive greedy algorithm that

constructs CAs using a graph representation [27]. It contributes to the construction of a

graph representation for the problem of constructing CAs and MCAs, as well as the

invention of a competitive greedy algorithm to solve the problem in the graph domain.

Later, a new variant of the Jaya algorithm for generating T-Way test suites has been

introduced, known as the Improved Jaya Algorithm (IJA). IJA enhances both the

intensification and diversification capabilities by incorporating new search operators such

as Lévy flight and mutation operators into the Jaya Algorithm. By applying Lévy flight and

mutation operators, IJA aims to improve the search effectiveness of the original Jaya

Algorithm. Another variant of the Jaya Algorithm is the Latin Hypercube Sampling Strategy

(LHS-JA) [28].

Following that, the Sine Cosine Algorithm (SCA) is a metaheuristic optimization technique

inspired by the sine and cosine mathematical functions found by [29]. SCA maintains a

balance between exploration and exploitation by combining global and local search

strategies.

In addition, Optimization algorithms can also be categorized into parametric and non-

parametric. A parametric algorithm means that the algorithm is parameter dependent which

requires specific parameters that affect its behavior and performance. This algorithm

involves tuning parameters where each specific value will affect the results received [30].

The good thing about this parametric feature is that it provides greater flexibility as it allows

the user to fine tune parameters. Also, higher control and customization features as

parameters can be adjusted for needs which can lead to more precise results for different

scenarios.

 However, finding the right values may be time consuming as it requires trial and error

which may be time intensive [31]. It is also exposed to the risk of suboptimal performance

as poorly tuned parameters can lead to failing and unreliable result. This tuning often

requires expertise and making these algorithms harder to apply for non-experts. Examples

of parameter optimization algorithms include IPOG, IPOG-D, PICT, TConfig, Cuckoo

Search (CS), Artificial Bee Colony Strategy (ABCS), Migrating Bird Optimization (MBO),

Genetic Strategy (GS), Flower Pollination Algorithm (PFA), Improved Jaya Algorithm

(IJA), DPSO, APSO, Pairwise Flower Strategy (PFS), Kidney Algorithm (KA), and Latin

Hypercube Sampling Strategy.

Unlike parameter-dependent algorithms, parameter-free algorithms operate without

requiring parameter setup or manual tuning. They often include self-adaptive mechanism

based on their operational parameters in the optimization process based on real time

feedback [32]. Among the advantages of non-parameter algorithms are its ease of use as it

eliminates the need for manual parameter tuning. This makes them more accessible for users

without the need for specialized expertise. Also, since they self-tune, the algorithms are

robust across applications. The algorithm can perform reliably across various problems and

are less sensitive to specific conditions. Nevertheless, this type of algorithm may not be

optimal for all problems as it may not achieve the highest level of performance for

specialized problems compared to the well-tuned parametric algorithm [33]. Additionally,

there may be slower adaptation due to reduced control over the algorithm's behavior. Since

the algorithm self-adjusts, users have limited influence over specific actions, which can be

Nurol Husna Che Rose et al. 278

a disadvantage in some scenarios. The QLearning Sine Cosine Algorithm (QLSCA) and the

Graph Based Greedy Algorithm (GBGA) are examples of non-parametric algorithms.

3. Overview of T-Way Testing

To illustrate the concept of T-Way interaction testing, let us use a hypothetical example of

an online bookstore application depicted in Fig 1. This application comprises four primary

components: Type, Author, Publisher, and Price Range. The "Type" component offers three

values: Crime and Thriller, Fantasy, and Historical Fiction, whereas the "Author"

component presents two possible values: Agatha Jones and Aaron, Jason. Additionally, the

"Publisher" component offers two possible values: Bloomsbury Publishing and Faber &

Faber. The "Price Range" component also presents two possible values: Under RM50 and

RM50 to RM100.

In terms of computation, the potential size of the test suite for a combination can be

calculated by multiplying the values of N and K, where N represents the number of test

cases and K represents the number of parameter values. If applied to a complex system with

numerous parameters, the resulting number of test cases can become unmanageably high

and impractical for testing. For instance, consider a system with 15 parameters, each having

3 possible values. In such a scenario, the number of test cases required to cover all system

configurations would be 315, which equals 14,348,907 test cases. This illustrates the risk of

combinatorial explosion, where the number of test cases grows exponentially with the

increase in the number of parameters and their respective values.

To address this challenge, T-Way testing is utilized as an alternative to reduce the number

of test cases. It achieves this by examining the interactions between t parameters in every

possible combination, thereby significantly reducing the total number of required test cases

compared to exhaustive testing. For the online bookstore application, if exhaustive testing

is performed on this system, the test suite size count would be 24. This calculation is derived

from multiplying the values of 3 (for the "Type" component), 2 (for the "Author"

component), 2 (for the "Publisher" component), and 2 (for the "Price Range" component),

resulting in 3 * 2 * 2 * 2 = 24 test cases needed to cover all possible application

configurations. Nevertheless, with the T-Way approach, only 7 test cases are required to

cover all the same configurations. Fig 2 illustrates the generation of the T-Way test suite for

the application.

Covering Array (CA) represents the test suite that demonstrates all the interactions of the

parameters. It is denoted as CA (N; t, vp), where: N is the size of the array or the number of

produced test cases, t is the interaction strength, p is the input parameter and v is the value

of the parameter. However, there are scenarios where the number of values is not consistent

across parameters. To represent this in the covering array, we use Mixed Covering Array

(MCA), denoted as MCA (N; t, k, (v1, v2, ..., vp)), where N is the size of the array or the

number of produced test cases is the interaction strength is the number of parameters and

(v1, v2, ..., vp) represents the number of values for each parameter. Referring to Fig 2, the

Mixed Covering Array (MCA) for the online bookstore application can be described as

MCA (7; 2, 4, (3, 2, 2, 2)). This signifies a test suite of 7 test cases with a covering strength

of 2, encompassing 4 parameters. Among these parameters, one has 3 values, while the

remaining three parameters each have 2 values.

 279 Wingsuit Flying Search Optimization…

Fig 1: Online Bookstore Application Interface

Fig 2: T-Way mixed covering array construction for Online Bookstore Application.

Nurol Husna Che Rose et al. 280

4. WFS Optimization Algorithm

The Wingsuit Flying Search (WFS) algorithm is developed by Nermin Covic and Bakir

Lacevic in 2020[34]. It introduces a novel approach to global optimization by drawing

inspiration from the daring sport of wingsuit flying. Essentially, the WFS algorithm will

start by getting a preliminary understanding of the search space. The flier representing the

algorithm and the act of flying will be symbolizing the algorithm execution.

During the flight, the wingsuit flier will aim to land on the optimal landing spot which is

considered as global minimum. The flier will try to avoid high and rough area and navigates

towards wide and smooth surrounding. Over time, the flier will then gradually approach the

designated area and landing safely. The act of unveiling flier arms for wing movement and

adjustment of the flier legs towards global minimum can be interpret as algorithm's

exploration and exploitation phases of the flier towards the targeted landing region. The

flier is considered to have found the termination points once it successfully lands. It thereby

automatically ends the algorithm’s search.

The Wingsuit Flying Search (WFS) algorithm works in 3 phase which are first, generating

initial points; secondly, determining neighborhood size for each point; and thirdly,

generating neighborhood points. In the first phase, the N initial points (where N represents

the population size) are located using the Halton Sequence. At the first iteration (m=1), each

point will be in n-dimensional box. The point will be placed randomly and separated equally

with the same initial discretization step distance. The initial positions of all points are

visualized in Fig 3.

Fig 3: The layout of first N(m) points and their Halton neighborhood in 2D space.Source: [35]

Then, in the second phase, the neighborhood size for each point is determined. Starting from

the second iteration (m=2), the points will be sorted in descending order and the first point

is assumed as the best point which means that the point is assigned with the largest number

of neighbors points (P_max(m)). The neighborhood size for each point is determined using

the equation (1) and equation (2). The equations are described as follows;

 281 Wingsuit Flying Search Optimization…

max

a) Calculate the neighborhood size using equation (1).

 P(m)(i) = P(m) [(1 -)]

 N(m)_1 (1)

b) Calculate the number of nodes using equation (2).

 N
(m)

= 2N

 (2)

The largest neighborhood size, P_max(m) can be calculated based on equation (3). The α(m)

or the search sharpness of the m-th iteration can be derived from the formula of α(m)=1-v^(-

(m-1)/(M-1)). Where M denotes as the maximum iteration for the algorithm and v is the

flier’s velocity. The flier velocity (v) is set to a default value since it is reported to have

insignificant impact on algorithm performance [35]

c) Calculate the largest neighborhood size using equation (3).

= α(m)N (3)

After the neighborhood size is assigned for each point, the new neighborhood point can be

generated. The generation of neighborhood points heavily relies on the discretization step.

This is due to the flier altitude decreases as it approaches the land, and similarly, the

discretization step also decreases. The discretization step, Δx, is calculated using Equation

(4). From the equation, the discretization step reduces as α(m) approaches 1 towards the end

of the iteration when m is equal to M.

d) Calculate the discretization step using equation (4).

∆x(m) = (1 – α(m)) ∆x(1), m ≥ 2 (4)

The boundary of the neighborhood points is determined through the selection from the three

sets algorithm outlined in Equation (5). The neighborhood vector (vk,i
(m)) will determine the

direction for the boundary of the neighborhood points.

e) Calculate the boundary of neighborhood points using equation (5).

Sk,1(xi) = { xk,i - ∆xk , xk,i} , if vk,i < 0;

Sk,2 (xi) = { xk,I , xk,i + ∆xk } , if vk,i < 0; (5)

Sk,3(xi) = Sk,1 (xi) Sk,2 (xi) , if vk,i = 0;

_____ i - 1

(m) (m) (m) (m)

(m) (m) (m) (m) (m)

(m) (m)

∪
(m) (m)

 max

 max

(m)

Nurol Husna Che Rose et al. 282

Fig 4 illustrates the neighborhood points represented by blue dots, while the potential

neighborhood points are represented by white dots in the boundary. Here, v represents the

vector subtraction between the current point and the current best location.

Fig 4: Generated Neighbourhood Points,

Source: (Covic & Lacevic, 2020)

At the end of each iteration, all new points will be added to N(m) new points until reaching

the maximum iteration(M). The point with the highest fitness will be considered as the

output of the WFS algorithm.

Algorithm 1: Pseudocode of WFS

1. Initialize the required parameters.

2. Generate the initial points in an n-dimensional box using the Halton Sequence.

3. While m-iteration equals 2 and m < M do

 3.1 Determine the neighborhood size for each point using equations (1) and

 (2).

 3.2 Calculate the neighborhood point of each point using the discretization

 step result from equation (3).

 3.3 Calculate the new discretization steps using equation (4).

 3.4 Calculate the boundary using equation (5).

 3.5 Generate the neighborhood points using the current N and equations (1)

 and (2).

 3.6 Calculate the fitness for each point.

 3.7 Sort the points according to the fitness values in descending order.

 283 Wingsuit Flying Search Optimization…

4. end while

5. Return the best point (0).

5. Experiment and Discussion

In this experiment, WFS in T-Way will be benchmarked against existing T-Way strategies

based on the test suite size value produced. A desktop PC with Windows 10, 2.40 GHz

Intel(R) Core TM i5-1135G7, CPU with 4 GB of RAM was used to run the experiments

along with the implemented WFS in Java 13.0.1 programming language using Eclipse

software. The experiments are categorized into the following four groups.

A. Comparing WFS with the currently available strategies using CA (t, v7), the number

of parameters remained constant, and their values varied. In addition, the interaction

strength t ranged from 2 to 6. Test suite size results of the strategies are extracted

from the published studies [21], [36], [37], [38].

B. Comparing WFS with the existing strategies using CA (t, 3p), the number of

parameters was varied, and their values remained constant. In addition, the

interaction strength t varied from 2 to 6. Test suite size results of the strategies are

extracted from the published studies [38], [39], [40].

C. Comparing WFS with the existing strategies using CA (N; 2, 2, p), where the

interaction strength, t is 2 and value, v is 2, but parameter, p is varied from 3 to 15

and additionally 50 and 100 to test higher configurations. Test suite size results of

the strategies are extracted from the published studies [20], [21], [25], [38].

D. Comparing WFS with the existing strategies using CA (N; (t, 2, 10), where p = 10

and v = 2 but the interaction strength, t is varied from 2 to 10. Test suite size results

of the strategies are taken from the published studies[21], [38], [41], [42].

All algorithms will be used through several experiments as stated and produce various test

suite sizes. The experiments are repeated 30 times and the smallest test suite result value

has been chosen as the best test suite size. The results have been included in Table 1 until

Table 4. Decisions that are not available are marked as NA as in the published article. Also,

in Table 5 until Table 7 shows the result for the Friedman Test of the algorithm.

Based on the results in Table 1, metaheuristic algorithms such GS, CS, ABVCS and WFS

succeeded in producing the smallest test suite for all the elements in the first t configuration,

t=2. For t=3, GS is the most superior with most test suite results being the smallest, followed

by ABVCS and WFS.

Regarding the system configuration for CA (t, v7) where v varied from 2 to 7 and t varied

from 2 to 6 as shown in Table 2, GS maintains its performance in producing the best number

of test suite sizes for t=2. DPSO, APSO, CS and WFS are algorithms that are competitive

with each other by producing results that are almost the same as each other. The test suite

size for CS was initially more or less the same as DPSO, APSO and GS finally overtake at

t=3, 4 and 5.

Nurol Husna Che Rose et al. 284

Concerning the results produced in Table 3, PKS outshine other algorithms by giving the

best test suite size especially during p=7. It works side by side by giving results that are

almost the same as the PSO, MBO, CS, FPA, and ABC algorithms. WFS is seen to provide

the best test suite coverage so that p=50 while other algorithms cannot provide information

based on data in published papers. PKS outperforms the lowest mean rank value followed

by WFS for this experiment. As for result of system configuration with CA (t,210) where t

varies from 2 to 9, WFS monopolizes the best test suite size especially at t= 7, 8 and 9. FPA

also gives almost the same decision as WFS but gives a decision the best at t=5. Meanwhile,

Jenny and TConfig give less impressive results, especially at t=4, 5 and 6.

Received 14 September 2024; Accepted 20 November 2024

285 Wingsuit Flying Search Optimization…

Table 1. Test suite size performance for CA (t, 3p) where p varied from 3 to 12 and t varied from 2 to 6

CA(t,3P) Pure computation strategies AI-based strategies

t p Jenny TConfig PICT IPOG-D IPOG GBGA QLSCA GS DPSO APSO CS ABVCS WFS

 Best Best Best Best Best Best Best Best Best Best Best Best Best

2 3 9 10 10 15 9 9 9 9 NA 9 9 9 9

 4 13 10 13 15 9 9 9 9 9 9 9 9 9

 5 14 14 13 15 15 12 11 11 11 11 11 11 11

 6 15 15 14 15 15 14 14 13 14 12 13 13 13

 7 16 15 16 15 15 15 14 14 15 15 14 15 15

 8 17 17 16 15 15 15 15 15 15 15 15 15 15

 9 18 17 17 15 15 16 15 15 15 16 15 16 16

 10 19 17 18 21 15 16 15 16 16 17 17 17 17

 11 17 20 18 21 17 17 16 16 17 NA 18 17 17

 12 19 20 19 21 21 18 16 16 16 NA 18 18 18

3 4 34 32 34 27 32 29 27 27 NA 27 28 27 28

 5 40 40 43 45 41 39 39 38 41 41 38 38 38

 6 51 48 48 45 46 45 33 43 33 45 43 44 46

 7 51 55 51 50 55 49 49 49 48 48 48 49 51

 8 58 58 59 50 56 54 52 54 52 50 53 54 56

 9 62 64 63 71 63 58 56 58 56 59 58 58 61

4 5 109 97 100 162 97 87 81 90 NA 94 94 98 96

 6 140 141 142 162 141 133 129 129 131 129 132 135 133

 7 169 166 168 226 167 156 150 153 150 154 154 157 160

5 6 348 305 310 386 305 273 NA 301 NA NA 304 273 298

 7 458 477 452 678 466 433 NA 432 NA NA 434 433 440

6 7 1089 921 1015 1201 921 982 NA 963 NA NA 973 982 963

 8 1466 1515 1455 1763 1493 NA NA 1399 NA NA 1401 NA 1412

Nurol Husna Che Rose et al. 286

Table 2: Test suite size performance for CA (t, v7) where v varied from 2 to 7 and t varied from 2 to 6

CA (t, v7) Pure computation strategies AI-based strategies

t p Jenny TConfig PICT IPOG-D IPOG QLSCA GS DPSO APSO CS WFS

 Best Best Best Best Best Best Best Best Best Best Best

2 2 8 7 7 8 7 7 6 7 6 6 7

 3 16 15 16 15 15 15 14 14 15 15 15

 4 28 28 27 32 29 23 24 24 25 25 27

 5 37 40 40 45 45 34 36 34 35 37 40

 6 55 57 56 72 55 48 52 47 NA NA 57

 7 74 76 74 91 49 64 68 64 NA NA 78

3 2 14 16 15 14 16 15 12 15 15 12 13

 3 51 55 51 50 55 49 49 49 48 49 51

 4 124 112 124 114 112 112 116 112 118 117 123

 5 236 239 241 252 237 215 221 216 239 223 242

 6 400 423 413 470 420 364 374 365 NA NA 418

4 2 31 36 32 40 35 31 27 34 30 27 25

 3 169 166 168 226 167 149 153 150 153 155 156

 4 517 568 529 704 614 477 486 472 472 487 513

5 2 57 56 57 80 60 NA 51 NA NA 53 51

 3 458 477 452 678 466 NA 432 NA NA 439 442

 4 1938 1792 1933 2816 1792 NA 1821 NA NA 1845 1861

6 2 87 64 72 96 64 NA 65 NA NA 66 66

 3 1087 921 1015 1201 921 NA 963 NA NA 973 955

 4 6127 NA 5847 5120 4096 NA 5608 NA NA 5610 5610

 287 Wingsuit Flying Search Optimization…

Table 3: Test suite size performance for CA (2, 2p) where p varied from 3 to 15, 50 and 100

CA(2,2P) Pure computation strategies AI-based strategies strategies

p Jenny TConfig PICT IPOG PSO MBO CS FPA ABC PKS WFS

 Best Best Best Best Best Best Best Best Best Best Best

3 5 4 4 4 4 4 4 4 4 4 4

4 6 6 5 6 6 6 5 6 5 5 6

5 7 6 7 8 6 6 6 6 6 6 6

6 8 7 6 8 7 7 6 7 7 6 6

7 8 9 7 8 7 7 7 7 7 6 7

8 8 9 8 8 8 7 8 8 8 7 7

9 8 9 9 10 8 8 8 8 8 8 8

10 10 9 9 10 8 8 8 8 8 8 8

11 9 9 9 10 9 8 8 8 9 8 8

12 10 9 9 10 9 8 9 9 9 8 8

13 10 9 9 10 9 9 NA NA 9 8 8

14 10 9 10 10 9 9 NA NA 9 9 9

15 10 9 10 10 10 9 NA NA 9 9 9

50 NA NA NA NA NA NA 12 NA NA NA 12

100 NA NA NA NA 15 NA 15 NA NA NA NA

Received 14 September 2024; Accepted 20 November 2024

Nurol Husna Che Rose et al. 288

Table 4: Test suite size performance for CA (t,210) where t varied from 2 to 9

CA(t,210) Pure computation strategies AI-based strategies

t Jenny TConfig PSO CS IMTS FPA IJA
LHS-

JA
WFS

 Best Best Best Best Best Best Best Best Best

2 10 9 8 8 8 8 8 8 8

3 18 20 17 16 16 17 NA NA 16

4 39 45 37 36 38 39 NA NA 38

5 87 95 82 79 80 82 79 79 84

6 169 183 158 157 159 160 159 159 160

7 311 NA NA NA NA NA 297 301 291

8 521 NA NA NA NA NA 502 515 500

9 788 NA NA NA NA NA 584 584 574

10 1024 NA NA NA NA NA 1024 1024 1024

 Table 5: Wilcoxon test for the result reported on Table 1 and Table 2

Algorithm Ranks Test Statistics

 WFS> WFS<
WFS

=

Asymp. Sig

(2-Tailed)
Null Hypothesis

Jenny 5 34 4 < 0.01
Reject the null

hypothesis

TConfig 7 29 6 0.007
Reject the null

hypothesis

PICT 4 34 5 < 0.01
Reject the null

hypothesis

IPOG-D 8 32 3 <0.01
Reject the null

hypothesis

IPOG 11 23 9 0.15
Accept the null

hypothesis

QLSCA 23 4 6 <0.01
Reject the null

hypothesis

DPSO 13 10 7 0.337
Accept the null

hypothesis

APSO 16 3 8 0.01
Reject the null

hypothesis

CS 8 20 12 0.182
Accept the null

hypothesis

To ensure that there is a significant difference between WFS and other algorithms, a non-

parametric statistical test, the Wilcoxon Signed Rank Test, is conducted. The null

hypothesis suggests that the median difference between paired observations is zero,

289 Wingsuit Flying Search Optimization…

indicating no effect or difference. Table 5 presents the test statistic and the ranks of WFS

compared with other optimization algorithms. In the "Ranks" section, "WFS >" indicates

the number of times WFS has a larger test case than the other algorithms. "WFS <" indicates

the number of times WFS has a smaller test case, and "WFS =" means the number of times

WFS produces the same test case value as the compared algorithm. For the test statistic, the

Asymp. Sig (2-Tailed) value determines the relevance of an algorithm. If the Asymp. Sig

(2-Tailed) value is less than 0.05, the null hypothesis is automatically rejected. This means

that the statistical test has provided sufficient evidence to conclude that the null hypothesis

is unlikely to be true.

The result shows that WFS mostly produces better results when 6 out of 9 tests show that

WFS produces a smaller number of test suites. WFS perform better test cases compared to

Jenny, TConfig, PICT, IPOG-D, IPOG and CS algorithm. Even though the number of test

cases that produced by WFS is exceeded more compared to QLSCA, DPSO and APSO, but

Asymp. Sig (2-Tailed) value is still significant and the difference in test suite size between

WFS and other T-Way strategies is minimal.

6. Conclusion

This paper presents the first implementation of WFS in T-Way testing for test suite

generation. The results from various experiments indicate that WFS is both promising and

competitive. Furthermore, WFS has ranked among the top algorithms, performing on par

with other metaheuristic approaches. Due to the nature of this algorithm, WFS start by the

process of a flier to land on earth and represent as the global optimum. However, as the flier

become nearer to the global optimum, the search sharpness will increase constantly towards

1 for every iteration. As a result, the discretization step also will constantly decrease.

Therefore, the search space become smaller and the WFS algorithm will focuses more on

exploitation as the algorithm progress. The algorithm eventually will become pure

exploitation at the end of the searching process. As a result, the searching process in WFS

algorithm has a potential to stuck at the local optima.

To fully explore the potential of WFS in T-Way implementation, it may be beneficial to

hybridize it with a global metaheuristic algorithm as the future work. This, in turn, will

provide a balance between exploration and exploitation in finding the optimal number of

test cases for combinatorial t-way test suite generation. Examples of potential global

optimization algorithms that provide good exploration capabilities include Simulated

Annealing, Genetic Algorithm, and Lévy Flight. Future work will extend the application of

WFS in T-Way testing to include variable strength and input-output relationship testing.

Additionally, combining WFS with other existing algorithms could be explored to further

enhance its performance in T-Way testing.

ACKNOWLEDGEMENTS
The author would like to acknowledge the support from the Fundamental Research

GrantScheme (FRGS) under a grant number of FRGS/1/2023/ICT01/UNIMAP/02/1 from

the Ministry of Higher Education Malaysia.

Nurol Husna Che Rose et al. 290

References

[1] N. Anwar and S. Kar, 2019“Review Paper on Various Software Testing Techniques

& Strategies,” Global Journal of Computer Science and Technology, vol. 19, no. 2,

pp. 43–49, doi: 10.34257/gjcstcvol19is2pg43.

[2] M. Z. Z. Ahmad, R. R. Othman, M. S. A. R. Ali, N. Ramli, M. W. Nasrudin, and A.

A. A. Halim, 2021“A Tuned Version of Ant Colony Optimization Algorithm

(TACO) for Uniform Strength T-way Test Suite Generator: An Execution’s Time

Comparison,” J Phys Conf Ser, vol. 1962, no. 1, doi: 10.1088/1742-

6596/1962/1/012037.

[3] N. Ramli, R. R. Othman, and M. S. A. R. Ali, “Optimizing combinatorial input-

output based relations testing using Ant Colony algorithm,” in 2016 3rd International

Conference on Electronic Design, ICED 2016, 2017. doi:

10.1109/ICED.2016.7804713.

[4] S. Zhao, T. Zhang, S. Ma, and M. Chen, 2022“Dandelion Optimizer: A nature-

inspired metaheuristic algorithm for engineering applications,” Eng Appl Artif Intell,

vol. 114, doi: 10.1016/j.engappai.2022.105075.

[5] V. Prasanna Moorthy, S. Siva Subramanian, V. Tamilselvan, S. Muthubalaji, P.

Rajesh, and F. H. Shajin, 2022“A hybrid technique based energy management in

hybrid electric vehicle system,” Int J Energy Res, vol. 46, no. 11, pp. 15499–15520,

doi: 10.1002/er.8248.

[6] B. Venkatesh, P. Sankaramurthy, B. Chokkalingam, and L. Mihet‐popa,

2022“Managing the Demand in a Micro Grid Based on Load Shifting with

Controllable Devices Using Hybrid WFS2ACSO Technique,” Energies (Basel), vol.

15, no. 3, doi: 10.3390/en15030790.

[7] W. K. Ahmed, M. N. bin M. Warip, W. K. Abduljabbar, and M. Elshaikh, 2022“Ws-

Olsr: Multipoint Relay Selection in Vanet Networks Using a Wingsuit Flying Search

Algorithm,” International Journal of Computer Networks and Communications, vol.

14, no. 6, pp. 37–49, doi: 10.5121/ijcnc.2022.14603.

[8] Y. Mao, F. Xu, X. Zhao, and X. Yan, 2021“A gearbox fault feature extraction method

based on wingsuit flying search algorithm-optimized orthogonal matching pursuit

with a compound time-frequency atom dictionary,” Journal of Mechanical Science

and Technology, vol. 35, no. 11, pp. 4825–4833, doi: 10.1007/s12206-021-1002-5.

[9] A. A. Muazu, A. S. Hashim, A. Sarlan, and U. D. Maiwada, 2022“Proposed Method

of Seeding and Constraint in One-Parameter-At-a-Time Approach for t-way

Testing,” 2022 International Conference on Digital Transformation and Intelligence,

ICDI 2022 - Proceedings, no. Icdi, pp. 39–45, doi:

10.1109/ICDI57181.2022.10007210.

[10] K. Z. Zamli, R. R. Othman, M. I. Younis, and M. H. Mohamed Zabil, “Practical

adoptions of T-way strategies for interaction testing,” in Communications in

Computer and Information Science, 2011. doi: 10.1007/978-3-642-22203-0_1.

[11] Y. Lei and K. C. Tai, “In-parameter-order: A test generation strategy for pairwise

testing,” in Proceedings - 3rd IEEE International High-Assurance Systems

Engineering Symposium, HASE 1998, 1998. doi: 10.1109/HASE.1998.731623.

291 Wingsuit Flying Search Optimization…

[12] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, 2007“IPOG: A general

strategy for T-way software testing,” Proceedings of the International Symposium

and Workshop on Engineering of Computer Based Systems, pp. 549–556, doi:

10.1109/ECBS.2007.47.

[13] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, 2008“IPOG-IPOG-D:

Efficient test generation for multi-way combinatorial testing,” Software Testing

Verification and Reliability, vol. 18, no. 3, pp. 125–148, doi: 10.1002/stvr.381.

[14] A. W. Williams, “Determination of Test Configurations for Pair-Wise Interaction

Coverage,” 2000. doi: 10.1007/978-0-387-35516-0_4.

[15] J. Czerwonka, 2008“Pairwise Testing in the Real World: Practical Extensions to

Test-Case Scenarios,” Proceedings of 24th Pacific Northwest Software Quality

Conference, pp. 419–430.

[16] B. Jenkins, “jenny: a pairwise testing tool,” Jenny Test Tool. [Online]. . Accessed:

Jul. 29, 2024. [Online]. Available: https://burtleburtle.net/bob/math/jenny.html

[17] B. S. Ahmed, 2014“PSTG : A t-way strategy adopting particle Swarm Optimization

PSTG : A T-Way Strategy Adopting Particle Swarm Optimization,” no. May, doi:

10.1109/AMS.2010.14.

[18] H. Wu, C. Nie, F. C. Kuo, H. Leung, and C. J. Colbourn, 2015“A Discrete Particle

Swarm Optimization for Covering Array Generation,” IEEE Transactions on

Evolutionary Computation, vol. 19, no. 4, pp. 575–591, doi:

10.1109/TEVC.2014.2362532.

[19] T. Mahmoud and B. S. Ahmed, 2015“An efficient strategy for covering array

construction with fuzzy logic-based adaptive swarm optimization for software testing

use,” Expert Syst Appl, vol. 42, no. 22, doi: 10.1016/j.eswa.2015.07.029.

[20] A. B. Nasser, A. R. A. Alsewari, and K. Z. Zamli, 2015“Tuning of cuckoo search

based strategy for T-way testing,” ARPN Journal of Engineering and Applied

Sciences, vol. 10, no. 19.

[21] H. L. Zakaria and K. Z. Zamli, “Migrating Birds Optimization based strategies for

Pairwise testing,” in 2015 9th Malaysian Software Engineering Conference, MySEC

2015, 2016. doi: 10.1109/MySEC.2015.7475189.

[22] S. Esfandyari and V. Rafe, 2018“A tuned version of genetic algorithm for efficient

test suite generation in interactive t-way testing strategy,” Inf Softw Technol, vol. 94,

doi: 10.1016/j.infsof.2017.10.007.

[23] A. B. Nasser, A. R. A. Alsewari, N. M. Tairan, and K. Z. Zamli, 2017“Pairwise test

data generation based on flower pollination algorithm,” Malaysian Journal of

Computer Science, vol. 30, no. 3, pp. 242–257, doi: 10.22452/mjcs.vol30no3.5.

[24] A. K. Alazzawi, H. M. Rais, and S. Basri, 2019“ABCVS: An artificial bee colony for

generating variable t-way test sets,” International Journal of Advanced Computer

Science and Applications, vol. 10, no. 4, doi: 10.14569/ijacsa.2019.0100431.

[25] A. A. B. Homaid, A. A. Alsewari, A. K. Alazzawi, and K. Z. Zamli, 2018“A Kidney

Algorithm for Pairwise Test Suite Generation,” Adv Sci Lett, vol. 24, no. 10, pp.

7284–7289, doi: 10.1166/asl.2018.12929.

[26] K. Z. Zamli, F. Din, B. S. Ahmed, and M. Bures, 2018“A hybrid Q-learning sine-

cosine-based strategy for addressing the combinatorial test suite minimization

problem,” PLoS One, vol. 13, no. 5, pp. 1–29, doi: 10.1371/journal.pone.0195675.

Nurol Husna Che Rose et al. 292

[27] J. Torres-Jimenez and J. C. Perez-Torres, 2019“A greedy algorithm to construct

covering arrays using a graph representation,” Inf Sci (N Y), vol. 477, doi:

10.1016/j.ins.2018.10.048.

[28] M. I. Younis, A. R. A. Alsewari, N. Y. Khang, and K. Z. Zamli, 2020“CTJ: Input-

output based relation combinatorial testing strategy using jaya algorithm,” Baghdad

Science Journal, vol. 17, no. 3, pp. 1002–1009, doi:

10.21123/BSJ.2020.17.3(SUPPL.).1002.

[29] J. M. Altmemi, R. R. Othman, and R. Ahmad, 2020“SCAVS: Implement Sine Cosine

Algorithm for generating Variable t-way test suite,” IOP Conf Ser Mater Sci Eng,

vol. 917, no. 1, doi: 10.1088/1757-899X/917/1/012011.

[30] A. K. Alazzawi, H. M. Rais, and S. Basri, 2019“Parameters tuning of hybrid artificial

bee colony search based strategy for t-way testing,” International Journal of

Innovative Technology and Exploring Engineering, vol. 8, no. 5s.

[31] A. A. Muazu, A. S. Hashim, and A. Sarlan, 2022“Review of Nature Inspired

Metaheuristic Algorithm Selection for Combinatorial t-Way Testing,” IEEE Access,

vol. 10, doi: 10.1109/ACCESS.2022.3157400.

[32] K. Z. Zamli, Y. A. Alsariera, A. B. Nasser, and A. Alsewari, 2015“On adopting

parameter free optimization algorithms for combinatorial interaction testing,” ARPN

Journal of Engineering and Applied Sciences, vol. 10, no. 19.

[33] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, 2014“Generating combinatorial test suite

using combinatorial optimization,” Journal of Systems and Software, vol. 98, doi:

10.1016/j.jss.2014.09.001.

[34] N. Covic and B. Lacevic, 2020“Wingsuit Flying Search-A Novel Global

Optimization Algorithm,” IEEE Access, vol. 8, pp. 53883–53900, doi:

10.1109/ACCESS.2020.2981196.

[35] N. Covic and B. Lacevic, 2020“Wingsuit Flying Search-A Novel Global

Optimization Algorithm,” IEEE Access, vol. 8, pp. 53883–53900, doi:

10.1109/ACCESS.2020.2981196.

[36] A. R. A. Alsewari, H. C. Har, A. A. B. Homaid, A. B. Nasser, K. Z. Zamli, and N.

M. Tairan, “Test cases minimization strategy based on flower pollination algorithm,”

in Lecture Notes on Data Engineering and Communications Technologies, vol. 5,

2018. doi: 10.1007/978-3-319-59427-9_53.

[37] A. B. Nasser, Y. A. Sariera, A. R. A. Alsewari, and K. Z. Zamli, 2015“Cuckoo search

based pairwise strategy for combinatorial testing problem,” J Theor Appl Inf Technol,

vol. 82, no. 1.

[38] A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali, 2022“Whale Optimization

Algorithm Strategies for Higher Interaction Strength T-Way Testing,” Computers,

Materials and Continua, vol. 73, no. 1, pp. 2057–2077, doi:

10.32604/cmc.2022.026310.

[39] K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, 2017“Fuzzy adaptive teaching

learning-based optimization strategy for the problem of generating mixed strength t-

way test suites,” Eng Appl Artif Intell, vol. 59, no. September 2016, pp. 35–50, doi:

10.1016/j.engappai.2016.12.014.

293 Wingsuit Flying Search Optimization…

[40] B. Ahmed, 2017“Generating Pairwise Combinatorial Interaction Test Suites Using

Single Objective Dragonfly Optimisation Algorithm,” Journal of Zankoy Sulaimani

- Part A, vol. 19, no. 1, doi: 10.17656/jzs.10586.

[41] A. B. Nasser, A. Alsewari, and K. Z. Zamli, Learning Cuckoo Search Strategy for t-

way Test Generation. Springer Singapore, 2018. doi: 10.1007/978-981-13-0755-3.

[42] Abdul Rahman A. Alsewari, 2012“A harmony search based pairwise sampling

strategy for combinatorial testing,” International Journal of the Physical Sciences,

vol. 7, no. 7, pp. 1062–1072, doi: 10.5897/ijps11.1633.

Notes on contributors

Nurol Husna Che Rose is a PhD student in Computer

Engineering at University Malaysia Perlis (UniMAP). Her

research interests include software testing, optimization

algorithms, and artificial intelligence. She is also a lecturer at

UniMAP with nearly 5 years of teaching experience in software

engineering field

Assoc. Prof. Dr. Rozmie Razif Bin Othman obtained his bachelor’s

degree in Electronics Engineering (Computer) from Multimedia

University, Malaysia in 2006. Later in 2009, he finished his master’s

degree in Telecommunication Engineering from University of Malaya.

Then, he completed his doctoral degree in Software Engineering in

2012. His doctoral thesis is on the design and development of

combinatorial test suite generator. His areas of interest are software

testing, optimization algorithm and machine learning. He has produces

more than 50 articles in his field of interest and graduated more than 5

post graduate students. He also a certified professional for

Requirement Engineering (CPRE), Certified Tester for both

Foundation Level (CTFL) and Advance Level (CTAL-TM). Currently,

he is an Associate Professor of Computer Engineering in Universiti

Malaysia Perlis (UniMAP).

Ts. Dr. Hasneeza Liza Zakaria earned her Ph.D. in Software

Engineering from Universiti Malaysia Pahang (UMP). She also

holds a Master’s degree in Computer Science from Universiti

Teknologi Malaysia (UTM) and a Bachelor’s degree in

Information Technology from Universiti Utara Malaysia

(UUM). Her doctoral research centered on the development of a

Hybrid Optimization Algorithm using the Etilist method. Her

research interests span software testing, optimization algorithms,

and other optimization problems. Additionally, she is a certified

professional technologist with the Malaysia Board of

Technologists (MBOT). Currently, she serves as a lecturer at

UniMAP.

