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Abstract 

Advancement in software development has resulted in complex software 
applications that encompass various functional and non-functional 
requirements. Such a complex system usually consists of many inputs either 
directly from users or from other connected systems or devices. Here, there is 
a potential for the system to go wrong due to certain combinations of inputs. 
Combinatorial Testing (or T-Way Testing) is effective in tackling the issue. 
Numerous studies have proposed strategies in generating T-Way test suite, 
and current trend indicates that researchers often incorporate metaheuristic 
algorithms in their proposed strategies. Many recent studies employ parameter 
optimization algorithms such as (Whale Optimization Algorithm, Particle 
Swarm Optimization, Gravitational Optimization Algorithm) in generating an 
optimized T-Way test suite. Often, researchers need to tune the parameters 
involved in the algorithm before the algorithm can be used for test suite 
generation. Since the system under test (SUT) can come in various numbers 
of input, it is impossible to find a single best value for every algorithm 
parameter. As a result, this paper proposed a T-Way Test suite generator 
utilizing Wingsuit Optimization Algorithm (a parameter free optimization 
algorithm) for combinatorial test suite generation. The algorithm learnt by 
itself as the optimization process progresses and hence eliminates the need for 
control parameters. Statistical analysis shows that WFS produces a smaller 
test suite compares to most T-Way strategies and in some cases, the difference 
between test suite size produce by WFS and other T-Way strategies are 
insignificant. 

Keywords: Combinatorial testing, Optimization Algorithm, T-Way test suites, Wingsuit 
Flying Search Algorithm 
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1. Introduction 

The swift evolution of technology as well as increasingly complex systems to satisfy human 

needs and wants require systems to operate efficiently and systematically. A complex 

system certainly involves numerous interactions between various parameters and is also 

susceptible to faults and data interaction errors. Therefore, software testing has been 

recognized as one of the important stages in the software development life cycle. It plays a 

crucial role for quality assurance, minimizing errors and reducing costs in software 

development [1]. While exhaustive testing is ideal for examining all potential parameter 

combinations, this approach is often impractical due to its time-consuming nature, 

particularly for large and excessively complex systems. 

 

From literature, many researchers suggest the used of combinatorial testing (often refers as 

T-Way testing where t denoted interaction strength) as the replacement of exhaustive testing 

for multi-parameters system testing. T-Way testing efficiently reduces the number of test 

cases by excluding tuples comprising combinations of parameters that are covered by a 

single test case at most[2] . The research on T-Way testing is still progressing and recent 

trend shows that researchers often employed metaheuristic optimization algorithm in 

generating T-Way test suite. Various strategies have been introduced by researchers which 

include Particle Swarm Optimization (PSO), Harmony Search (HS), Cuckoo Search (CS), 

Flower Strategy (FS), Artificial Bee Colony (ABC), Ant Colony System (ACS), Dragonfly 

Algorithm, Adaptive Teaching Learning Based Optimization (ATLBO), Whale 

Optimization Algorithm (WOA), Gravitational Search Algorithm (GSA), Sine Cosine 

Algorithm (SCA) and many more. These strategies reported to produce an optimal T-Way 

test suite in many benchmark experiments. 

 

However, according to the No Free Lunch Theorem, no algorithm works best for all possible 

situation or system configurations. Hence, the integration of optimization algorithms into 

T-Way testing remains an ongoing and open research endeavor. Motivated by the above 

problem, this paper introduces a newly developed algorithm called the Wingsuit Flying 

Search (WFS), which was design in 2020.  

 

The WFS algorithm is a unique global optimization method based on population dynamics 

and features stochastic search behavior. Inspired by the extreme sport of wingsuit flying, it 

emulates the flier's objective to reach the lowest point of the terrain, analogous to finding 

the global minimum in the search space. 

 

Apart from the population size and the maximum number of iterations, this approach offers 

the advantage of being parameter-free. Additionally, its ability to optimize different sections 

of the search space independently makes it suitable for parallelized computation [3]. 

Furthermore, it is considered a simple and lightweight algorithm. While traversing the 

search space, WFS can rapidly converge on the global optimal solution of the objective 

function at hand. An extensive computational investigation, encompassing 30 classical and 

10 CEC 2020 benchmark functions, showcases the promising capabilities of the WFS 

algorithm, as it consistently outperforms competing methods across various scenarios [4]. 

Consequently, WFS has been widely utilized to tackle complex optimization problems 

across diverse fields, including energy management [5], [6] network communication [7], 

and condition and fault monitoring [8]. As a new metaheuristic algorithm, it appears the 
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potential of WFS is not fully explored since the T-Way implementation is not utilized in the 

algorithm. So, this work has 2 main contributions which are: -  

1. the design and implementation of WFS algorithm as the optimization algorithm in T-

Way test suite generation. 

2. evaluation and comparison of the performance of WFS in generating T-Way test suite 

across various benchmark experiments. 

The organization of this paper is structured as follows: Section 2 discusses related works on 

T-Way strategies. Section 3 provides background information on the combinatorial T-Way 

testing strategy. Sections 4 introduce the Wingsuit Flying Search (WFS) Algorithm and its 

implementation in T-Way testing. Section 5 presents preliminary results and discusses the 

benchmarking outcomes. Finally, Section 6 concludes this research. 

2. Related Work 

In general, there are two strategic approaches in T-Way testing which are computational 

and metaheuristic. The computational-based method is flexible approach derived from the 

algebraic method. It uses pure computational strategies to construct the test case. The 

strategies adopting computational can be categorized into two categories which are one-

parameter-at-a-time (OPAT) or the one-test-at-a-time (OTAT) strategy approach.  

 

The OPAT strategy employs both horizontal and vertical extension techniques to generate 

a test suite for a T-Way combination. First, OPAT starts with the initial pair parameter of 

the system input [9].  Then, it expands horizontally by adding one parameter at each step by 

prioritizing the parameter that covers the most tuples. The expansion process continues 

iteratively until all tuples are covered. However, if there are remaining uncovered tuples, 

OPAT will extend a new test case vertically. IPOG and IPOG-D is among the algorithms 

that employ the OPAT approach.  

 

Another testing strategy is the OTAT strategy. It constructs a test suite by integrating a 

single test case that covers the maximum number of tuples at once. Uncovered tuples are 

addressed by including the next test case and this process repeats iteratively until all tuples 

are covered. The tool that utilizing OTAT involves Jenny, Pairwise Independent 

Combinatorial Testing (PICT) and Test Configuration (TConfig). 

 

Apart from the computational approach, there is also another strategy to produce a T-Way 

test suite by using the metaheuristic approach. Metaheuristic algorithms often mimic diverse 

sources of inspiration, such as natural phenomena or behaviors[10]. In general, 

metaheuristic strategies may begin with either a single or population-based random solution. 

Then, a search space technique either exploration or exploitation is iteratively applied in 

attempt to improve them. During each iteration the fitness for each population point is 

calculated and the best candidate solution is selected and added to the final test suite. 

Metaheuristic can be categorized based on their source of inspiration which is biological or 

science-inspired.  

 

The examples of biological-inspired metaheuristics include Cuckoo Search (CS), and. 

Artificial Bee Colony Strategy (ABC), Migrating Bird Optimization (MBO). For science-

inspired metaheuristics and hybridization algorithms include the QLearning Sine Cosine 
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Algorithm (QLSCA), Graph Based Greedy Algorithm (GBGA), Genetic Strategy (GS), 

Flower pollination algorithm (FPA) and Improved Jaya Algorithm (IJA). 

 

One of the first strategies to use the OPAT approach is the in-parameter-order (IPO) strategy 

[11]. It is a pairwise strategy (two-way) based on vertical and horizontal extension. It starts 

by creating a test set for pairs of the first two parameters. Then, it expands the test set to 

include pairs of the first three parameters, and continues this process until all parameters are 

covered. If necessary, it will then perform a vertical extension to address any uncovered 

interactions to address general T-Way support with variant algorithms for optimizing the 

horizontal and vertical extension. The strategy was later developed into IPOG [12] and 

IPOG-D [13] which handle general T-Way interactions and optimize both horizontal and 

vertical extensions. 

 

Then, [14] develops TConfig (Test Configuration) that builds test suites using a recursive 

process based on orthogonal arrays. Although useful, orthogonal arrays are typically only 

applicable in tiny configurations. Thus, computationally based techniques that enable very 

big configurations have attracted a lot of interest.  

 

On the other hand, in 2008, Czerwonka developed the test suite generating technique named 

Pairwise Independent Combinatorial Testing known as PICT [15]. It is extensively 

employed by Microsoft for the purpose of software testing. PICT first creates all potential 

tuples and designates each one as uncovered. The tuples involved in any restrictions 

declared by the test engineer will be marked as excluded. Next, using the greedy heuristic 

strategy, one uncovered tuple will be chosen and continued until it is completed. The 

completed test case will be added to the final test suite, and the tuples it addresses will be 

marked as covered. This process will keep going until all tuples are covered. 

 

Next, Jenkins introduced a deterministic T-Way generation approach known as 'Jenny' [16]. 

Jenny utilizes a greedy algorithm to construct a test suite incrementally. In Jenny, each 

feature has its own T-Way interactions to cover. It starts with one-way interactions (single 

features), then moves to two-way interactions (combinations of two features), and so on. 

This means that while one feature covers two-way interactions, another begins working on 

three-way interactions, and this continues until all interactions are covered in the test suite. 

 

Another computational algorithm is Particle Swarm Optimization (PSO). It was first used 

in T-Way testing in 2010 to generate a test suite. The Particle Swarm Test Generator (PSTG) 

[17], mimics the cognitive abilities observed in fish schools and flocks of birds when they 

search for food. Each member within flocks and schools progresses towards both the most 

favorable individual position and the optimal global positions. Each time a test case is 

randomly generated, the velocity is adjusted based on the best test case discovered so far. 

The particle then progresses to the next improved location and generate the best test case. 

This process continues until all termination criteria are met. PSO then managed to produce 

a new variant include DPSO [18] and APSO[19]. The Mamdani-type Fuzzy Inference 

System (FIS) and Particle Swarm Optimization are hybridized to create adaptive particle 

swarm optimization (APSO). FIS is used to maximize PSO's parameters. 

 

The Cuckoo Search (CS) are motivated by certain birds' brood parasitic behavior such as 

the Ani and Guira cuckoos.  By increasing the search in nearby areas of the current solution 

and effectively exploring the whole search area with the use of levy flights, CS offers the 



     

Nurol Husna Che Rose et al.                                                                                      276 

best possible balance between local intensification and global diversification. In 2015, CS 

was adapted in T-Way [20]   by tuning the nest size, the elitism probability, and the 

repetition parameter. 

 

Then, Migrating Bird Optimization (MBO) was implemented for test data generation in 

2016 by [21]. The MBO method looks for the finest test cases by utilizing the energy-saving 

habits of various long-distance flying birds through neighborhood search. The two unique 

aspects of MBO are the benefit-sharing system and parallel solution processing to minimize 

number of test suite. 

 

Meanwhile. Genetic Strategy (GS)[22] is a version of GA that modifies the crossover and 

mutation operators. By modifying the bit structure and providing fast access to test cases, 

GS enhances the fitness function's performance. The modifications and the reduction of 

GA's complexity in the suggested GS reduce the size of the test suite and speed up its 

creation. 

 

Consequently, Flower Pollination Algorithm (FPA) is inspired by the pollination behavior 

of flowering plants. It is a process of transferring pollen grains from the male part of one 

flower (anther) to transferred to the female part (stigma) of another flower by pollinators 

such as insects, birds, or wind. In 2017, [23] adopts FPA in T-Way named Pairwise Flower 

Strategy (PairFS). This efficient method with lesser control parameters shows best result in 

generated pairwise test suite size. 

 

In addition, the Artificial Bee Colony Strategy (ABC) is adopted in T-Way. ABC was 

created by mimic the eating habits of a colony of honey bees. Honey is represented as test 

cases and the high-quality honey serve as the test cases with maximum covered interaction 

element. The Artificial Bee Colony Strategy (ABCVS) is a two-way generation strategy 

based on the Artificial Bee Colony (ABC) algorithm for a uniform and variable strength test 

suite [24]. 

 

Also, Kidney Algorithm (KA) simulates the function of the kidneys in a living organism. 

Filtration (local search) and reabsorption (global search) are the two primary steps of KA. 

To provide a reduced test suite, the Pairwise Kidney Strategy (PKS) was created based on 

KA in 2018[25]. Urine formation in KA occurs through four primary mechanisms. These 

procedures include filtration, reabsorption, secretion, and excretion. Solutes and water from 

the blood are moved to the kidney's tubules in the filtration process. It separates filtered 

blood (FB) as good solution and waste group (W) for worse solution (local search). The 

second phase, known as reabsorption, functions as a global search in which test cases in 

(W) are reevaluated and sent back to FB. Then, in the secretion phase, test cases that have 

been added to FB are then reviewed, and the test case that has inadequate quality coverage 

is returned to W. Lastly, test cases in W are eliminated and replaced with newly created test 

cases during the excretion process. 

 

The Sine Cosine Algorithm (SCA) and the Q-learning algorithm are combined to form the 

Q-learning Sine Cosine Algorithm (QLSCA)[26]. Instead of using a reward and penalty 

system to determine the best course of action during runtime, the SCA switching probability 

method is replaced with the Q-learning technique. To further improve the solution diversity 

and enable jumping out of local optima, the Lévy flying motion and crossover are 

incorporate into the QLSCA. 
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The Graph Based Greedy Algorithm (GBGA) is a competitive greedy algorithm that 

constructs CAs using a graph representation [27]. It contributes to the construction of a 

graph representation for the problem of constructing CAs and MCAs, as well as the 

invention of a competitive greedy algorithm to solve the problem in the graph domain. 

 

Later, a new variant of the Jaya algorithm for generating T-Way test suites has been 

introduced, known as the Improved Jaya Algorithm (IJA). IJA enhances both the 

intensification and diversification capabilities by incorporating new search operators such 

as Lévy flight and mutation operators into the Jaya Algorithm. By applying Lévy flight and 

mutation operators, IJA aims to improve the search effectiveness of the original Jaya 

Algorithm. Another variant of the Jaya Algorithm is the Latin Hypercube Sampling Strategy 

(LHS-JA) [28].  

 

Following that, the Sine Cosine Algorithm (SCA) is a metaheuristic optimization technique 

inspired by the sine and cosine mathematical functions found by [29]. SCA maintains a 

balance between exploration and exploitation by combining global and local search 

strategies.  

 

In addition, Optimization algorithms can also be categorized into parametric and non-

parametric. A parametric algorithm means that the algorithm is parameter dependent which 

requires specific parameters that affect its behavior and performance. This algorithm 

involves tuning parameters where each specific value will affect the results received [30]. 

The good thing about this parametric feature is that it provides greater flexibility as it allows 

the user to fine tune parameters. Also, higher control and customization features as 

parameters can be adjusted for needs which can lead to more precise results for different 

scenarios. 

 However, finding the right values may be time consuming as it requires trial and error 

which may be time intensive [31]. It is also exposed to the risk of suboptimal performance 

as poorly tuned parameters can lead to failing and unreliable result. This tuning often 

requires expertise and making these algorithms harder to apply for non-experts. Examples 

of parameter optimization algorithms include IPOG, IPOG-D, PICT, TConfig, Cuckoo 

Search (CS), Artificial Bee Colony Strategy (ABCS), Migrating Bird Optimization (MBO), 

Genetic Strategy (GS), Flower Pollination Algorithm (PFA), Improved Jaya Algorithm 

(IJA), DPSO, APSO, Pairwise Flower Strategy (PFS), Kidney Algorithm (KA), and Latin 

Hypercube Sampling Strategy. 

Unlike parameter-dependent algorithms, parameter-free algorithms operate without 

requiring parameter setup or manual tuning.  They often include self-adaptive mechanism 

based on their operational parameters in the optimization process based on real time 

feedback [32]. Among the advantages of non-parameter algorithms are its ease of use as it 

eliminates the need for manual parameter tuning. This makes them more accessible for users 

without the need for specialized expertise. Also, since they self-tune, the algorithms are 

robust across applications. The algorithm can perform reliably across various problems and 

are less sensitive to specific conditions. Nevertheless, this type of algorithm may not be 

optimal for all problems as it may not achieve the highest level of performance for 

specialized problems compared to the well-tuned parametric algorithm [33]. Additionally, 

there may be slower adaptation due to reduced control over the algorithm's behavior. Since 

the algorithm self-adjusts, users have limited influence over specific actions, which can be 
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a disadvantage in some scenarios. The QLearning Sine Cosine Algorithm (QLSCA) and the 

Graph Based Greedy Algorithm (GBGA) are examples of non-parametric algorithms.  

3. Overview of T-Way Testing 

To illustrate the concept of T-Way interaction testing, let us use a hypothetical example of 

an online bookstore application depicted in Fig 1. This application comprises four primary 

components: Type, Author, Publisher, and Price Range. The "Type" component offers three 

values: Crime and Thriller, Fantasy, and Historical Fiction, whereas the "Author" 

component presents two possible values: Agatha Jones and Aaron, Jason. Additionally, the 

"Publisher" component offers two possible values: Bloomsbury Publishing and Faber & 

Faber. The "Price Range" component also presents two possible values: Under RM50 and 

RM50 to RM100. 

 

In terms of computation, the potential size of the test suite for a combination can be 

calculated by multiplying the values of N and K, where N represents the number of test 

cases and K represents the number of parameter values. If applied to a complex system with 

numerous parameters, the resulting number of test cases can become unmanageably high 

and impractical for testing. For instance, consider a system with 15 parameters, each having 

3 possible values. In such a scenario, the number of test cases required to cover all system 

configurations would be 315, which equals 14,348,907 test cases. This illustrates the risk of 

combinatorial explosion, where the number of test cases grows exponentially with the 

increase in the number of parameters and their respective values. 

 

To address this challenge, T-Way testing is utilized as an alternative to reduce the number 

of test cases. It achieves this by examining the interactions between t parameters in every 

possible combination, thereby significantly reducing the total number of required test cases 

compared to exhaustive testing. For the online bookstore application, if exhaustive testing 

is performed on this system, the test suite size count would be 24. This calculation is derived 

from multiplying the values of 3 (for the "Type" component), 2 (for the "Author" 

component), 2 (for the "Publisher" component), and 2 (for the "Price Range" component), 

resulting in 3 * 2 * 2 * 2 = 24 test cases needed to cover all possible application 

configurations. Nevertheless, with the T-Way approach, only 7 test cases are required to 

cover all the same configurations. Fig 2 illustrates the generation of the T-Way test suite for 

the application. 

 

Covering Array (CA) represents the test suite that demonstrates all the interactions of the 

parameters. It is denoted as CA (N; t, vp), where: N is the size of the array or the number of 

produced test cases, t is the interaction strength, p is the input parameter and v is the value 

of the parameter. However, there are scenarios where the number of values is not consistent 

across parameters. To represent this in the covering array, we use Mixed Covering Array 

(MCA), denoted as MCA (N; t, k, (v1, v2, ..., vp)), where N is the size of the array or the 

number of produced test cases is the interaction strength is the number of parameters and 

(v1, v2, ..., vp) represents the number of values for each parameter. Referring to Fig 2, the 

Mixed Covering Array (MCA) for the online bookstore application can be described as 

MCA (7; 2, 4, (3, 2, 2, 2)). This signifies a test suite of 7 test cases with a covering strength 

of 2, encompassing 4 parameters. Among these parameters, one has 3 values, while the 

remaining three parameters each have 2 values. 
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Fig 1: Online Bookstore Application Interface  

 

Fig 2: T-Way mixed covering array construction for Online Bookstore Application. 
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4. WFS Optimization Algorithm 

The Wingsuit Flying Search (WFS) algorithm is developed by Nermin Covic and Bakir 

Lacevic in 2020[34]. It introduces a novel approach to global optimization by drawing 

inspiration from the daring sport of wingsuit flying. Essentially, the WFS algorithm will 

start by getting a preliminary understanding of the search space. The flier representing the 

algorithm and the act of flying will be symbolizing the algorithm execution. 

 

During the flight, the wingsuit flier will aim to land on the optimal landing spot which is 

considered as global minimum. The flier will try to avoid high and rough area and navigates 

towards wide and smooth surrounding. Over time, the flier will then gradually approach the 

designated area and landing safely. The act of unveiling flier arms for wing movement and 

adjustment of the flier legs towards global minimum can be interpret as algorithm's 

exploration and exploitation phases of the flier towards the targeted landing region. The 

flier is considered to have found the termination points once it successfully lands. It thereby 

automatically ends the algorithm’s search. 

 

The Wingsuit Flying Search (WFS) algorithm works in 3 phase which are first, generating 

initial points; secondly, determining neighborhood size for each point; and thirdly, 

generating neighborhood points. In the first phase, the N initial points (where N represents 

the population size) are located using the Halton Sequence. At the first iteration (m=1), each 

point will be in n-dimensional box. The point will be placed randomly and separated equally 

with the same initial discretization step distance. The initial positions of all points are 

visualized in Fig 3. 

 

Fig 3: The layout of first N(m) points and their Halton neighborhood in 2D space.Source: [35] 

Then, in the second phase, the neighborhood size for each point is determined. Starting from 

the second iteration (m=2), the points will be sorted in descending order and the first point 

is assumed as the best point which means that the point is assigned with the largest number 

of neighbors points (P_max(m)). The neighborhood size for each point is determined using 

the equation (1) and equation (2). The equations are described as follows; 
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max 

a) Calculate the neighborhood size using equation (1). 

 

 
 

         P(m)(i) = P(m) [ (1 -             )]  

                                      N(m)_1                                                                     (1) 
 

 

b) Calculate the number of nodes using equation (2). 

 

                             N
(m)   

=    2N 
                                                
                                                                                                                                                  (2) 
 

The largest neighborhood size, P_max(m) can be calculated based on equation (3). The α(m) 

or the search sharpness of the m-th iteration can be derived from the formula of α(m)=1-v^(-

(m-1)/(M-1)). Where M denotes as the maximum iteration for the algorithm and v is the 

flier’s velocity. The flier velocity (v) is set to a default value since it is reported to have 

insignificant impact on algorithm performance [35] 

 

 

c) Calculate the largest neighborhood size using equation (3). 

 

= α(m)N                                                                                (3) 

 

After the neighborhood size is assigned for each point, the new neighborhood point can be 

generated. The generation of neighborhood points heavily relies on the discretization step. 

This is due to the flier altitude decreases as it approaches the land, and similarly, the 

discretization step also decreases. The discretization step, Δx, is calculated using Equation 

(4). From the equation, the discretization step reduces as α(m) approaches 1 towards the end 

of the iteration when m is equal to M. 

  

d) Calculate the discretization step using equation (4). 

 

∆x(m) = (1 – α(m)) ∆x(1),  m ≥ 2                                                    (4) 

 

The boundary of the neighborhood points is determined through the selection from the three 

sets algorithm outlined in Equation (5). The neighborhood vector (vk,i
(m)) will determine the 

direction for the boundary of the  neighborhood points.  

 

 

 

e) Calculate the boundary of neighborhood points using equation (5). 

 

Sk,1(xi     ) = { xk,i      -   ∆xk    ,   xk,i} ,     if vk,i < 0; 

 

Sk,2 (xi     ) = { xk,I      ,      xk,i  +  ∆xk  } ,     if vk,i < 0;                                      (5) 

 

Sk,3(xi      ) = Sk,1 (xi     )      Sk,2 (xi     )  ,       if vk,i  = 0; 

 

_____ i - 1     

(m) (m) (m) (m) 

(m) (m) (m) (m) (m) 

(m) (m) 

∪ 
(m) (m) 

 max 

 max 

(m) 
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Fig 4 illustrates the neighborhood points represented by blue dots, while the potential 

neighborhood points are represented by white dots in the boundary. Here, v represents the 

vector subtraction between the current point and the current best location. 

 

 

Fig 4: Generated Neighbourhood Points,                                                                                                                                                      

Source: (Covic & Lacevic, 2020) 

 

At the end of each iteration, all new points will be added to N(m) new points until reaching 

the maximum iteration(M). The point with the highest fitness will be considered as the 

output of the WFS algorithm. 

 

Algorithm 1: Pseudocode of WFS 

 

1.  Initialize the required parameters. 

2.  Generate the initial points in an n-dimensional box using the Halton Sequence. 

3.  While m-iteration equals 2 and m < M do 

        3.1 Determine the neighborhood size for each point using equations (1) and 

               (2). 

        3.2 Calculate the neighborhood point of each point using the discretization 

               step result from equation (3). 

        3.3 Calculate the new discretization steps using equation (4). 

        3.4 Calculate the boundary using equation (5). 

        3.5 Generate the neighborhood points using the current N and equations (1) 

               and (2). 

        3.6 Calculate the fitness for each point. 

        3.7 Sort the points according to the fitness values in descending order. 
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4.  end while 

5.  Return the best point (0). 

 

5. Experiment and Discussion  

In this experiment, WFS in T-Way will be benchmarked against existing T-Way strategies 

based on the test suite size value produced. A desktop PC with Windows 10, 2.40 GHz 

Intel(R) Core TM i5-1135G7, CPU with 4 GB of RAM was used to run the experiments 

along with the implemented WFS in Java 13.0.1 programming language using Eclipse 

software. The experiments are categorized into the following four groups. 

 

A. Comparing WFS with the currently available strategies using CA (t, v7), the number 

of parameters remained constant, and their values varied. In addition, the interaction 

strength t ranged from 2 to 6. Test suite size results of the strategies are extracted 

from the published studies [21], [36], [37], [38]. 

 

B. Comparing WFS with the existing strategies using CA (t, 3p), the number of 

parameters was varied, and their values remained constant. In addition, the 

interaction strength t varied from 2 to 6. Test suite size results of the strategies are 

extracted from the published studies [38], [39], [40]. 

 

C.  Comparing WFS with the existing strategies using CA (N; 2, 2, p), where the 

interaction strength, t is 2 and value, v is 2, but parameter, p is varied from 3 to 15 

and additionally 50 and 100 to test higher configurations. Test suite size results of 

the strategies are extracted from the published studies [20], [21], [25], [38]. 

 

D. Comparing WFS with the existing strategies using CA (N; (t, 2, 10), where p = 10 

and v = 2 but the interaction strength, t is varied from 2 to 10. Test suite size results 

of the strategies are taken from the published studies[21], [38], [41], [42]. 

 

All algorithms will be used through several experiments as stated and produce various test 

suite sizes. The experiments are repeated 30 times and the smallest test suite result value 

has been chosen as the best test suite size. The results have been included in Table 1 until 

Table 4. Decisions that are not available are marked as NA as in the published article. Also, 

in Table 5 until Table 7 shows the result for the Friedman Test of the algorithm. 

 

Based on the results in Table 1, metaheuristic algorithms such GS, CS, ABVCS and WFS 

succeeded in producing the smallest test suite for all the elements in the first t configuration, 

t=2. For t=3, GS is the most superior with most test suite results being the smallest, followed 

by ABVCS and WFS.  

 

Regarding the system configuration for CA (t, v7) where v varied from 2 to 7 and t varied 

from 2 to 6 as shown in Table 2, GS maintains its performance in producing the best number 

of test suite sizes for t=2. DPSO, APSO, CS and WFS are algorithms that are competitive 

with each other by producing results that are almost the same as each other. The test suite 

size for CS was initially more or less the same as DPSO, APSO and GS finally overtake at 

t=3, 4 and 5.  
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Concerning the results produced in Table 3, PKS outshine other algorithms by giving the 

best test suite size especially during p=7. It works side by side by giving results that are 

almost the same as the PSO, MBO, CS, FPA, and ABC algorithms. WFS is seen to provide 

the best test suite coverage so that p=50 while other algorithms cannot provide information 

based on data in published papers. PKS outperforms the lowest mean rank value followed 

by WFS for this experiment. As for result of system configuration with CA (t,210) where t 

varies from 2 to 9, WFS monopolizes the best test suite size especially at t= 7, 8 and 9. FPA 

also gives almost the same decision as WFS but gives a decision the best at t=5. Meanwhile, 

Jenny and TConfig give less impressive results, especially at t=4, 5 and 6.  
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Table 1. Test suite size performance for CA (t, 3p) where p varied from 3 to 12 and t varied from 2 to 6 

CA(t,3P) Pure computation strategies AI-based strategies 

t p Jenny TConfig PICT IPOG-D IPOG GBGA QLSCA GS DPSO APSO CS ABVCS WFS 

    Best Best Best Best Best Best Best Best Best Best Best Best Best 

2 3 9 10 10 15 9 9 9 9 NA 9 9 9 9 

  4 13 10 13 15 9 9 9 9 9 9 9 9 9 

  5 14 14 13 15 15 12 11 11 11 11 11 11 11 

  6 15 15 14 15 15 14 14 13 14 12 13 13 13 

  7 16 15 16 15 15 15 14 14 15 15 14 15 15 

  8 17 17 16 15 15 15 15 15 15 15 15 15 15 

  9 18 17 17 15 15 16 15 15 15 16 15 16 16 

  10 19 17 18 21 15 16 15 16 16 17 17 17 17 

  11 17 20 18 21 17 17 16 16 17 NA 18 17 17 

  12 19 20 19 21 21 18 16 16 16 NA 18 18 18 

3 4 34 32 34 27 32 29 27 27 NA 27 28 27 28 

  5 40 40 43 45 41 39 39 38 41 41 38 38 38 

  6 51 48 48 45 46 45 33 43 33 45 43 44 46 

  7 51 55 51 50 55 49 49 49 48 48 48 49 51 

  8 58 58 59 50 56 54 52 54 52 50 53 54 56 

  9 62 64 63 71 63 58 56 58 56 59 58 58 61 

4 5 109 97 100 162 97 87 81 90 NA 94 94 98 96 

  6 140 141 142 162 141 133 129 129 131 129 132 135 133 

  7 169 166 168 226 167 156 150 153 150 154 154 157 160 

5 6 348 305 310 386 305 273 NA 301 NA NA 304 273 298 

  7 458 477 452 678 466 433 NA 432 NA NA 434 433 440 

6 7 1089 921 1015 1201 921 982 NA 963 NA NA 973 982 963 

  8 1466 1515 1455 1763 1493 NA NA 1399 NA NA 1401 NA 1412 
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Table 2: Test suite size performance for CA (t, v7) where v varied from 2 to 7 and t varied from 2 to 6 

CA (t, v7) Pure computation strategies AI-based strategies 

t p Jenny TConfig PICT IPOG-D IPOG QLSCA GS DPSO APSO CS WFS 

    Best Best Best Best Best Best Best Best Best Best Best 

2 2 8 7 7 8 7 7 6 7 6 6 7 

  3 16 15 16 15 15 15 14 14 15 15 15 

  4 28 28 27 32 29 23 24 24 25 25 27 

  5 37 40 40 45 45 34 36 34 35 37 40 

  6 55 57 56 72 55 48 52 47 NA NA 57 

  7 74 76 74 91 49 64 68 64 NA NA 78 

3 2 14 16 15 14 16 15 12 15 15 12 13 

  3 51 55 51 50 55 49 49 49 48 49 51 

  4 124 112 124 114 112 112 116 112 118 117 123 

  5 236 239 241 252 237 215 221 216 239 223 242 

  6 400 423 413 470 420 364 374 365 NA NA 418 

4 2 31 36 32 40 35 31 27 34 30 27 25 

  3 169 166 168 226 167 149 153 150 153 155 156 

  4 517 568 529 704 614 477 486 472 472 487 513 

5 2 57 56 57 80 60 NA 51 NA NA 53 51 

  3 458 477 452 678 466 NA 432 NA NA 439 442 

  4 1938 1792 1933 2816 1792 NA 1821 NA NA 1845 1861 

6 2 87 64 72 96 64 NA 65 NA NA 66 66 

  3 1087 921 1015 1201 921 NA 963 NA NA 973 955 

  4 6127 NA 5847 5120 4096 NA 5608 NA NA 5610 5610 
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Table 3: Test suite size performance for CA (2, 2p) where p varied from 3 to 15, 50 and 100 

CA(2,2P) Pure computation strategies AI-based strategies strategies 

p Jenny TConfig PICT IPOG PSO MBO CS FPA ABC PKS WFS 

  Best Best Best Best Best Best Best Best Best Best Best 

3 5 4 4 4 4 4 4 4 4 4 4 

4 6 6 5 6 6 6 5 6 5 5 6 

5 7 6 7 8 6 6 6 6 6 6 6 

6 8 7 6 8 7 7 6 7 7 6 6 

7 8 9 7 8 7 7 7 7 7 6 7 

8 8 9 8 8 8 7 8 8 8 7 7 

9 8 9 9 10 8 8 8 8 8 8 8 

10 10 9 9 10 8 8 8 8 8 8 8 

11 9 9 9 10 9 8 8 8 9 8 8 

12 10 9 9 10 9 8 9 9 9 8 8 

13 10 9 9 10 9 9 NA NA 9 8 8 

14 10 9 10 10 9 9 NA NA 9 9 9 

15 10 9 10 10 10 9 NA NA 9 9 9 

50 NA NA NA NA NA NA 12 NA NA NA 12 

100 NA NA NA NA 15 NA 15 NA NA NA NA 
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Table 4: Test suite size performance for CA (t,210) where t varied from 2 to 9 

CA(t,210) Pure computation strategies AI-based strategies 

t Jenny TConfig PSO CS IMTS FPA IJA 
LHS-

JA 
WFS 

  Best Best Best Best Best Best Best Best Best 

2 10 9 8 8 8 8 8 8 8 

3 18 20 17 16 16 17 NA NA 16 

4 39 45 37 36 38 39 NA NA 38 

5 87 95 82 79 80 82 79 79 84 

6 169 183 158 157 159 160 159 159 160 

7 311 NA NA NA NA NA 297 301 291 

8 521 NA NA NA NA NA 502 515 500 

9 788 NA NA NA NA NA 584 584 574 

10 1024 NA NA NA NA NA 1024 1024 1024 

 

              Table 5: Wilcoxon test for the result reported on Table 1 and Table 2 

Algorithm Ranks Test Statistics 

  WFS> WFS< 
WFS 

= 

Asymp. Sig 

(2-Tailed) 
Null Hypothesis 

Jenny 5 34 4 < 0.01 
Reject the null 

hypothesis 

TConfig 7 29 6 0.007 
Reject the null 

hypothesis 

PICT 4 34 5 < 0.01 
Reject the null 

hypothesis 

IPOG-D 8 32 3 <0.01 
Reject the null 

hypothesis 

IPOG 11 23 9 0.15 
Accept the null 

hypothesis 

QLSCA 23 4 6 <0.01 
Reject the null 

hypothesis 

DPSO 13 10 7 0.337 
Accept the null 

hypothesis 

APSO 16 3 8 0.01 
Reject the null 

hypothesis 

CS 8 20 12 0.182 
Accept the null 

hypothesis 

 

To ensure that there is a significant difference between WFS and other algorithms, a non-

parametric statistical test, the Wilcoxon Signed Rank Test, is conducted. The null 

hypothesis suggests that the median difference between paired observations is zero, 
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indicating no effect or difference. Table 5 presents the test statistic and the ranks of WFS 

compared with other optimization algorithms. In the "Ranks" section, "WFS >" indicates 

the number of times WFS has a larger test case than the other algorithms. "WFS <" indicates 

the number of times WFS has a smaller test case, and "WFS =" means the number of times 

WFS produces the same test case value as the compared algorithm. For the test statistic, the 

Asymp. Sig (2-Tailed) value determines the relevance of an algorithm. If the Asymp. Sig 

(2-Tailed) value is less than 0.05, the null hypothesis is automatically rejected. This means 

that the statistical test has provided sufficient evidence to conclude that the null hypothesis 

is unlikely to be true.  

 

The result shows that WFS mostly produces better results when 6 out of 9 tests show that 

WFS produces a smaller number of test suites. WFS perform better test cases compared to 

Jenny, TConfig, PICT, IPOG-D, IPOG and CS algorithm. Even though the number of test 

cases that produced by WFS is exceeded more compared to QLSCA, DPSO and APSO, but 

Asymp. Sig (2-Tailed) value is still significant and the difference in test suite size between 

WFS and other T-Way strategies is minimal. 

6. Conclusion  

This paper presents the first implementation of WFS in T-Way testing for test suite 

generation. The results from various experiments indicate that WFS is both promising and 

competitive. Furthermore, WFS has ranked among the top algorithms, performing on par 

with other metaheuristic approaches. Due to the nature of this algorithm, WFS start by the 

process of a flier to land on earth and represent as the global optimum. However, as the flier 

become nearer to the global optimum, the search sharpness will increase constantly towards 

1 for every iteration. As a result, the discretization step also will constantly decrease. 

Therefore, the search space become smaller and the WFS algorithm will focuses more on 

exploitation as the algorithm progress. The algorithm eventually will become pure 

exploitation at the end of the searching process. As a result, the searching process in WFS 

algorithm has a potential to stuck at the local optima.  

 

To fully explore the potential of WFS in T-Way implementation, it may be beneficial to 

hybridize it with a global metaheuristic algorithm as the future work. This, in turn, will 

provide a balance between exploration and exploitation in finding the optimal number of 

test cases for combinatorial t-way test suite generation. Examples of potential global 

optimization algorithms that provide good exploration capabilities include Simulated 

Annealing, Genetic Algorithm, and Lévy Flight. Future work will extend the application of 

WFS in T-Way testing to include variable strength and input-output relationship testing. 

Additionally, combining WFS with other existing algorithms could be explored to further 

enhance its performance in T-Way testing. 
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