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Abstract 

Satellite image classification plays a crucial role in land use analysis, 
environmental monitoring, and urban planning. Recent developments in computer 
vision have led to the development of algorithms for image classification that are 
becoming increasingly successful. These techniques are known as vision 
transformer. On the other hand, it is often important to overcome problems related 
with limited receptive fields and the need for complete training data if one wants 
optimum performance. This work aims to provide a fresh approach for enhancing 
the design of the Swin transformer thus improving the classification of land use 
and land cover on the Eurosat dataset. Depth-wise Separable Convolutional Multi 
head Self-attention (DWSC-MSA) methods are suggested to be included into Swin 
transformer blocks. This entails changing the Shifted Window Multi-Head Self-
Attention (SW-MSA) in the decoder and encoder blocks respectively.  The DWSC-
MSA method enables the extraction and prioritizing of specific features, resulting 
in enhanced classification performance. We performed experiments on the Eurosat 
dataset using many additional commonly used transformers, including swin-tiny, 
swin-small, swin-base, crossvit, and convit. The experimental results showcase the 
efficacy of our suggested framework in capturing spatial relationships and 
improving feature representation, thus pushing the boundaries of land use and 
land cover classification. 

Keywords: Depth-wise Separable Convolution, Eurosat, Image Classification, 
SWIN transformer, Vision Transformers. 

 

1 Introduction 

Remote Sensing is the method of gathering data from an object or scene by using reflected 

and emitted electromagnetic radiation, without any direct contact with the object or scene. 

These tasks are performed via satellite or airplane. These devices expedite the procedure, 

enabling the collection of photos from perilous and hard-to-reach areas, thereby covering 

a bigger expanse. Remote sensing imagery serves multiple purposes, including air quality 
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assessment, earthquake prediction, land management, and urban planning. Remote 

sensing imagery is extensively utilized for land use classification, rendering it an essential 

application of this technology. Land use classification is essential for understanding the 

biophysical ecosystems of the Earth and the effects of socio-economic development. 

While it is important to continue the steady expansion of urban regions, it is also necessary 

to control the haphazard growth in metropolitan areas. So, it is crucial to optimize the 

utilization of every square inch of land while developing land management planning 

models. Remote sensing imagery is highly effective in this context. It provides current 

information on land areas and also reveals changes in the land over time. By monitoring 

these changes, we can acquire understanding about global climate changes. Classification 

of remotely sensed pictures has been a prominent subject of study in computer vision 

during four decades. Previous research during last ten years concentrated on feature-based 

and texture analysis classification techniques. Recent research has mainly concentrated 

on  

 

classification by utilizing Convolutional Neural Networks (CNNs), resulting in a notable 

enhancement in performance. Significant contributions in this field are made by AlexNet 

[1], ResNet [2], GoogleNet [3], SqueezeNet [4], and DenseNet [5]. CNNs have been 

widely employed in the domain of computer vision. Improving image classification with 

transformer-based design has made big steps forward. The original Vision Transformer 

model has exhibited favorable results relative to traditional CNN models. 

The transformer model was initially presented by [6] and shown remarkable inference 

outcomes for Natural Language Processing (NLP) tasks. Since the introduction of the 

transformer network [6], [7], [8], [9], researchers have subsequently utilized this technique 

to other computer vision problems [10], [11], [12], [13]. Conventional neural networks 

(CNNs) just identify image features and lack any positional information between these 

components, therefore limiting their capacity to understand the whole image. [14] provide 

an improved approach dubbed Vision Transformer (ViT), which deviates from traditional 

CNN methods by include self-attention layers, to solve this problem. This helps the model 

to completely grasp the images and reduces the special assumptions related to every image. 

Every block has a Normalizing Layer used to eliminate the interdependencies among input 

images. This method improves the generalization of the model overall than Convolutional 

Neural Networks. [14] introduces Vision Transformer architecture for vision tasks. First 

pretrained on the JFT-300M [15] and ImageNet datasets [1], the ViT model then is fine-

tuned on a medium-sized dataset for classification. The authors demonstrate that their 

method is computationally less expensive than conventional convolutional neural 

networks. By creating a Data-efficient image Transformers (DeiT), which lowers the 

required data and processing resources for inference, [7] thus expand this study. Recent 

transformer models such as ViT and DeiT [7] have significant restrictions even if they 

provide advancements. One clear restriction is the capacity of these models to efficiently 

handle many picture domains of different sizes. [16] have proposed a new kind of 

transformer models known as the Swin Transformer to handle these problems. This model 

could infer or suggest the existence of objects of various diameters. It can therefore identify 
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a person in both front and the background. Researchers have been interested to the 

transformer model because of its excellent natural image classification accuracy.  

As shown by the references [17], [18], [19], [20], [21], [22], [23], transformers have lately 

become a main player in the area of remote sensing. Transfer learning starts the parameters 

of the network model by using large datasets like ImageNet. Remote sensing images then 

help to fine-tune the network model thereby optimizing processing costs and improving 

classification results. This paper introduces a method for leveraging the Swin Transformer 

model [16] and transfer learning to extract features from remote sensing images.  This 

approach derives the weight parameters by pre-training the Swin-T model using ImageNet 

dataset. Further training makes use of the pre-trained model using a remote sensing image 

dataset, therefore allowing model fine-tuning to improve remote sensing scene 

classification accuracy. 

 

The stated contributions in this article are: 

 

• The proposed approach offers a new architecture combining Swin transformer with 

Depth-wise Separable Convolution. This method enables the simultaneous use of CNNs 

and transformer features, therefore producing a model with excellent performance in 

applications requiring feature extraction from spatial and long-range data. 

•  Five variety of transformers were used in the land use and land cover (LULC) 

classification tasks using the EuroSAT dataset: Swin-Tiny, Crossvit, Convit, and the 

suggested DWSC-SWIN Small. 

• Practical assessment, both with and without augmented data, evaluates transformers' 

performance using geometric data augmentations to improve variety of employed 

datasets. 

 

2 Related Works on Satellite Image Classification  

Considering the strength of deep learning, here is a review of various modern methods for 

satellite image classification derived from deep learning. Using vision transformers, the 

authors provided land cover image classification in [24] for the purpose to increase 

accuracy and efficiency in land cover image study. The work revealed that transformer-

based methods—including ViT and Swin Transformer—outperform CNNs, producing 

cutting-edge results. Training and assessment based on the EuroSAT dataset [25], which 

consists of 10 land cover classifications derived from Sentinel-2 satellite images. Pre-

trained weight models shown better accuracy than those learned from scratch according to 

validation accuracy curves. MaxViT's validation accuracy is 99.0%; SwinB's is 98.7%; 

ResNeXt's is 98.1%; DenseNet's is 92.5% when trained from scratch and using pre-trained 

weights respectively. These results show how well transformer models classify land 

covers, thereby improving environmental analysis and urban planning. 

 

Combining the Swin Transformer model in [26] with transfer learning provides a fresh 

approach for remote sensing image scene classification. The model achieves remarkable 
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accuracy on six different remote sensing datasets by means of pre-training on ImageNet 

datasets and migration learning. On UCM Dataset, validation results indicate incredible 

classification accuracy rates: 99.99%; on AID, they are 96.80%; on NWPU, they are 

95.20%. This method shows how successfully transformer models and transfer learning 

improve image acquired for remote sensing categorization accuracy. The research 

presents interesting fresh perspectives for those considering transformer-based 

technology in remote sensing applications. 

 

Another study [27] using the Swin Transformer model assessed it on three datasets: AID 

[29], EuroSAT, and NWPU-RESISC45 [28]. The Swin Transformer achieved 99.02% 

accuracy on the EuroSAT dataset, 95.38% accuracy on the NWPU-RESISC45 dataset, and 

95.90% accuracy on the AID dataset with very impressive validation accuracy scores. The 

findings indicate that in remote sensing image classification the Swin architecture is more 

effective than present state-of- the-art approaches. The dependability and efficiency of the 

Swin Transformer for land cover classification tasks are supported by continuously 

excellent validation accuracies across many datasets. 

The authors of [30] presented SCANeXt, a 3D medical image segmentation model 

combining two forms of attention mechanisms and depth-wise convolution within a 

transformer framework. On datasets including Synapse, BraTS, and ACDC, SCANeXt 

proved to be not just effective but also superior than other techniques. This model used 

channel-wise attention and Swin transformer-based spatial attention for comprehensive 

feature extraction. Training on datasets such as ACDC produced rather excellent results; 

SCANeXt obtained a Dice Similarity Coefficient (DSC) of over 95.18%, greater than other 

approaches under comparison. Better segmentation findings overall from SCANeXt, 

which indicates that medical image segmentation techniques may be enhanced using it. 

The SparTa Block [31] presented to maximize transformer architecture for image 

classification. On datasets including ImageNet100 (86.96%), CIFAR10 (97.43%), and 

CIFAR100 (85.35%), this model significantly lowers parameters while nevertheless 

obtaining great accuracy. SparseSwin improves image classification problems by using the 

SparTa Block within the Swin Transformer architecture. ImageNet100, CIFAR10, and 

CIFAR100 among other datasets provide varied images for validation and training. The 

success of SparseSwin emphasizes how well it may improve performance and efficiency 

in computer vision applications. 

The method SepViT[32], as new type of Vision Transformer, incorporates a depth wise 

separable self-attention module to improve the efficiency of the model. This module 

captures both local and global dependencies within and among the windows in a sequential 

manner. Depth-wise separable self-attention differs from normal self-attention by 

concentrating on interactions inside narrower windows instead of the complete input 

sequence, by utilizing the principles of depth wise separable convolution. SepViT achieves 

efficient computation of attention while preserving its expressive capacity. It improves the 

interaction between local and global information, therefore addressing the costly 

computational needs. The work uses the ADE20K dataset for semantic segmentation tasks 

and the ImageNet-1K dataset for image classification. On ImageNet-1K SepViT achieves 
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an 84.2% validation accuracy and also lowers latency by 40% when compared to similar 

models like Cross-Shaped Window Transformer (CSWin). Strong performance on typical 

datasets shows that the model is efficient in balancing performance with computational 

savings. 

In [1] a CNN-based model for trash image classification was created depending on the 

DSCAM for attention weighting and merging depth-wise separable convolutions. Its 

Resnet-50 backbone helped to boost feature extraction. Testing the method with five 

datasets—including Real Scene—had a high validation accuracy of 98.9%. The findings 

underlined how improved the proposed method is compared to traditional CNN 

architectures. Attention modules might be included into visual transformers for better 

classification and probable use in automated waste sorting systems in future directions. 

The work emphasizes the necessity of advanced techniques in improving garbage image 

classification accuracy and efficiency.For LULC classification, some relevant research has 

mainly been focused on the EuroSAT dataset.[25] classified using GoogleNet and ResNet-

50 architectures. Reaching a confirmed accuracy of 98.57%, the ResNet-50 model 

outperformed the GoogleNet model with 98.18%, said the researchers. 

The authors in Das et al. (2021), employed and fine-tunned different versions of the 

Res2Net50 architecture during their evaluation the method on the UC Merced[34], 

Brazilian Coffee Scenes[35], and EuroSAT[25] datasets. Their classification accuracies 

were reported as 98.76%, 93.25%, and 97.50% correspondingly.  For regions with little 

data, the authors in [36] suggested a deep learning-based method to map land cover. They 

employed transfer learning, pre-training a ResNet-50 on EuroSAT (96% accuracy) and 

fine-tuning on a proposed Nigerian dataset (Nig_Images).  

Similar to the image classification tasks, data augmentation and ensemble learning can 

improve model’s generalization. The model attains an accuracy of 80% on Nig_Images, 

showcasing its potential for the advancement of developing nations. The application of 

transfer learning to classify LULC from high-resolution remote sensing images was 

studied by [37]. By means of a comparison between pre-trained VGG16 and Wide Residual 

Networks (WRNs), the researchers obtained a state-of- the-art validation accuracy of 

99.17% for Wide ResNet-50 with geometric augmentation and 99.04% without geometric 

augmentation on the EuroSAT dataset ( RGB bands). This paper shows how well transfer 

learning performs for chores involving land cover and usage.[38] used EuroSAT dataset to 

examine how well several deep learning models performed for the classification of remote 

sensing images. The testing accuracy results on the dataset revealed that ResNET50 

achieved a testing accuracy of 92%, EfficientNET B0 achieved a testing accuracy of 91%, 

and VGG16 demonstrated a testing accuracy of 76%. 

3 Methods 

The proposed method is based on enhancing of the Swin Transformer by incorporating 

depth wise separable convolutions. Therefore, in this section, first, the architecture of 

Swin Transformer and Depth-Wise Separable Convolution is reviewed, then the proposed 

method is introduced. 
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3.1. Swin Transformer Architecture  

Swin Transformer is a Hierarchical Vision Transformer using Shifted Windows that 

developed for vision tasks. Fig 1 shows the configuration of the Swin-S model. The 

dimensions of the supplied image are H×W×3. To begin with, the input image is partitioned 

into blocks of 4×4 pixels, resulting in a total number of blocks equal to H/4×W/4. Next, 

each block is compressed in the channel axis to yield a matrix with dimensions of 

H/4×W/4×48. The image features are ultimately acquired during Stage 1 to Stage 4. Stage 

1 consists of two components: Linear Embedding and Swin Transformer Block. Stages 2 

to 4 encompass the processes of patch merging and the implementation of the Swin 

Transformer Block. Stage 3 consists of many Swin Transformer Blocks. The purpose of 

Linear Embedding is to convert a matrix with dimensions of H/4×W/4×48 into a matrix 

with dimensions of H/4×W/4×C. Patch Merging in block 2 provides multi-scale feature 

extraction by reducing the size of the image by a factor of 2 twice. This results in a matrix 

of dimensions H/8×W/8×2C. The patch merging H and W are halved, while the channel 

dimension is doubled. After the patch is applied, the result is a merged matrix in Stage 3 

with dimensions H/16×W/16×4C.  

 
The primary components of the Swin Transformer Block are the window multi-head self-

attention (W-MSA) mechanism and the shift window multi head self-attention mechanism 

(SW-MSA). The window-based multi-head self-attention mechanism divides the input 

image into separate windows, each containing several blocks. These windows serve as the 

units for self-attention calculation, effectively lowering computing complexity. 

 
Fig 1. Original architecture of Swin small Transformer [2]. 

 
 

The multi-head self-attention mechanism of the shifted window operates by modifying the 

arrangement of pixels in an image by window repositioning. This allows for the extraction 

of feature information from diverse points inside the newly formed windows. The self-

attention calculation of the new window facilitates information interaction at various 

places of the input image. The self-attention mechanism [2] is used to calculate the 

equation indicated in (1). 

 
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑 + 𝐵)V         (1) 

 

The query matrix, key matrix, and value matrix are denoted as Q, K and V ∈ 𝑅𝑀2∗𝑑, d 

correspondingly. B is the relative position offset matrix, and it also belongs to 𝑅𝑀2∗𝑀2
. M 

is the number of blocks in the window. The GELU function serves as a non-linear 
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activation function in the Swin Transformer Block. It enhances the training process by 

accelerating it and has commendable stability and generalization capabilities. The equation 

(2) described as following: 

 
 

    𝐺𝐸𝐿𝑈(𝑥) =
1

2𝑥(1+𝑒𝑟𝑓(
𝑥

√2
))

                            (2) 

                                   

≈ 1/2(tanh(√
2

𝜋
(𝑥 + 0.044715𝑥3))) 

 
 

3.2. Depth-Wise Separable Convolution (DWSC) 

DWSC is an efficient type of convolution that factorizes a standard convolution operation 

into two simpler operations: depth-wise convolution and pointwise convolution (1x1 

convolution). This factorization significantly reduces the number of parameters and 

computational cost while preserving the representational power of the convolutional layer. 

In a standard convolutional layer, the input feature map X ∈ RH×W×Cin is convolved with a 

set of filters W ∈ Rk×k×Cin×Cout  , where H and Ware the height and width of the feature 

map, Cin is the number of input channels, Cout is the number of output channels, and k is the 

kernel size. The output feature map Y ∈ RH×W×Cout is given by (3): 

     

𝑌(𝑖, 𝑗, 𝐶𝑜𝑢𝑡) = ∑ ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐𝑖𝑛). 𝑊(𝑚, 𝑛, 𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡)
𝐶𝑖𝑛
𝐶𝑖𝑛=1

𝑘
𝑛=1

𝑘
𝑚=1                       

(3) 

 
The total number of parameters in a standard convolutional layer is k×k×Cin×Cout. DWSC 

decomposes the standard convolution into two separate layers: 

 

1. Depth-wise Convolution: Each input channel is convolved independently with a set 

of depth-wise filters Wdepth ∈ Rk×k×Cin  . This operation produces an intermediate 

feature map  Xdepth ∈ RH×W×Cin  as shown in (4). 

 

𝑋𝑑𝑒𝑝𝑡ℎ(𝑖, 𝑗, 𝑐𝑖𝑛) = ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐𝑖𝑛). 𝑊𝑑𝑒𝑝𝑡ℎ(𝑚, 𝑛, 𝑐𝑖𝑛)𝑘
𝑛=1

𝑘
𝑚=1                              

(4) 

The number of parameters in the depth-wise convolution is k×k×Cin. 

 

2. Pointwise Convolution (1x1 Convolution): A 1x1 convolution is then applied to 

combine the depth-wise-convolved outputs across different channels using pointwise 

filters 

Wpoint ∈ R1×1×Cin×Cout  as described in (5) 

𝑌(𝑖, 𝑗, 𝑐𝑜𝑢𝑡 ) = ∑ 𝑋𝑑𝑒𝑝𝑡ℎ(𝑖, 𝑗, 𝑐𝑖𝑛). 𝑊𝑝𝑜𝑖𝑛𝑡(1,1, 𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡)
𝑐𝑖𝑛
𝑐𝑖𝑛=1        (5) 
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The number of parameters in the pointwise convolution is 1×1×Cin×Cout. By factorizing 

the standard convolution into depth-wise and pointwise convolutions, the total number of 

parameters in a depth-wise separable convolutional layer is significantly reduced. The total 

number of parameters is: Total Parameters DWSC=k×k×Cin+1×1×Cin×Cout. Compared to 

the number of parameters in a standard convolution:  Total Parameters Standard=k×k×Cin

×Cout.   The reduction in the number of parameters is particularly notable when the number 

of output channels Cout is large. To calculate ratio as following:  

 

𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐷𝑊𝑆𝐶
 

                                              

𝑅𝑎𝑡𝑖𝑜 =
𝑘2×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

𝐶𝑖𝑛(𝑘2+𝐶𝑜𝑢𝑡)
   = 

     𝑅𝑎𝑡𝑖𝑜 =
1

𝐶𝑜𝑢𝑡
+

1

𝑘2                                   (6) 

This ratio described in (6) shows the relative number of parameters in a DWSC compared 
to a standard convolution. 

 

3.3. The Proposed Method 

In this study, we introduce a novel approach to enhancing the Swin Transformer 

architecture for land use and land cover classification using the Eurosat dataset. Our 

methodology was done on encoder and decoder blocks. The proposed model comprises 

four stages, with each stage utilizing a Swin Transformer Block. The primary enhancement 

involves substituting the SW-MSA with DWSC-MSA within these blocks. The detailed 

architecture is illustrated in Fig 2. The proposed mechanism for DWSC-MSA blocks can 

be detailed as follows: 

 

1. Input Processing: The input image X ∈ RB×H×W×C  is first normalized using layer 

normalization. Where B is the batch size, H and W are the height and width of the 

feature map, and C is the number of channels. This step ensures that the input features 

are standardized across the feature dimension, which helps stabilize and accelerate 

training. 

 

2. Depth-wise Separable Convolution (DWSC) Layer: The normalized input is 

processed through the DWSC layer, which consists of two main components: 

o Depth-wise Convolution: Each input channel is convolved independently using a 

depth-wise convolutional filter. This operation captures spatial relationships within 

each channel without combining information across channels, as in (7). 

𝑋𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒
(𝑐)

= 𝑋(𝑐) ∗ 𝐾𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒
(𝑐)

                (7) 

For each chanel c, where * denotes the convolution operation and 𝐾𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒
(𝑐)

 is the 

depth-wise convolution kernel for channel c. 
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Output:  𝑋𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 ∈ 𝑅𝐵×𝐻×𝑊×𝐶 . 

                       

o Pointwise Convolution: Following depth-wise convolution, a 1x1 pointwise 

convolution is applied to combine the depth-wise-convolved outputs across different 

channels. This step ensures efficient interaction and combination of features from 

different channels, as in (8).  

Xpointwise = Xdepthwise ∗ Kpointwise               (8) 

    𝐾𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 is the pointwise convolution kernel with dimensions 1×1×C×M. 

Output:  Xdwsc ∈ RB×H×W×M where M is the number of output channels. 

 

3.Multi-Head Self-Attention (MultiHead) Layer: The output from the DWSC layer serves 

as the input for the multi-head self-attention mechanism. This layer operates as 

follows: 

o Linear Projections: The input Xdwsc is projected into queries (Q), keys(K), and values 

(V) matrices using learned linear projection weights. 

                 𝑄 = 𝑋𝑑𝑤𝑠𝑐𝑊𝑄, 𝐾 = 𝑋𝑑𝑤𝑠𝑐𝑊𝐾, 𝑉 = 𝑋𝑑𝑤𝑠𝑐𝑊𝑉.  

Where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ 𝑅𝑀×𝑑𝑘 are learned projection matrices and dk is the 

dimensionality of the queries and keys. 

o Scaled Dot-Product Attention: For each attention head, the attention weights are 

computed using the scaled dot-product of the queries and keys. These attention 

weights are then applied to the value matrix, allowing the model to focus on different 

parts of the input feature map simultaneously, as described in (9). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                       (9) 

o Multi-Head Attention: The outputs from all attention heads are concatenated and 

linearly projected back to the original input dimension, resulting in the multi-head 

attention output. 

 

MultiHead(Q, K, V) = Concat(head1, head2, . . , headh) 

Where  ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑤𝑖
𝑄, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉). Then, project the concatenated 

output back to the original dimension, as in equation (10). 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂  (10) 

Where  𝑊𝑂 ∈ 𝑅ℎ𝑑𝑘×𝑀 is the output projection matrix. 

 

4.Layer Normalization and Multi-Layer Perceptron (MLP): The output of the multi-head 

self-attention layer undergoes another layer normalization, followed by a 

feedforward neural network (MLP) consisting of two fully connected layers with a 

ReLU activation in between. This step further refines the feature representation as in 

(11). 

                                                               Xnorm = LN(MultiHeadOutput) 
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Xmlp = MLP(Xnorm) 

                                MLP(X) = FC2 (ReLU(FC1(x)))      (11) 

5.Residual Connection: An element-wise sum is performed to add the output of the MLP 

to the original input, creating a residual connection that helps mitigate the vanishing 

gradient problem and facilitates the flow of information through the network. The 

final output of DWSC-MSA is shown in (12): 

𝑋𝑜𝑢𝑡 = 𝑋𝑚𝑙𝑝 + 𝑋        (12) 

The enhanced model is implemented in four stages, each comprising multiple 

DWSC-MSA blocks and linear embedding layers to reduce the feature map 

dimensions progressively. The final output is used for classification and 

segmentation tasks, leveraging the extracted hierarchical feature representations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. The architecture of the proposed method. 

 

4 Experiments and Results 

4.1. Dataset 

The EuroSat collection comprises a total of 27,000 annotated and geo-referenced sentinel-

2 pictures including 13 spectral bands. This dataset contains a comprehensive set of classes, 

which are mostly evenly distributed, that are essential for training and assessing our 

classification algorithms. The dataset consists of a total of 10 classes, including Industrial 

Buildings, Residential Buildings, Annual Crop, Permanent Crop, River, Sea and Lake, 

Herbaceous Vegetation, Highway, Pasture, and Forest. Each image in the European Urban 

Atlas covers cities with a spatial resolution of 10 meters per pixel and has a size of 64X64. 

The dataset was acquired directly from the primary source [3], guaranteeing its validity and 

the integrity of the data. The dataset will be divided into three parts: 70% for training, 20% 

for validation, and 10% for testing. A subset of this dataset is depicted in Fig 3. 
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Fig 3. Sample images from Eurosat dataset in RGB form. 

 

4.2. Data Preprocessing and Training 

We created specialized code to optimize the loading, preparation, and enhancement of data. 

The preprocessing procedures encompassed the normalizing and scaling of photographs. 

We conducted training on five transformer-based architectures: Swin tiny, Swin small, 

Swin base [2], Convit small [4], and Crossvit small [5]. Additionally, we trained the 

suggested architecture DWSC-SWIN small. All models were trained for 25 epochs and the 

model with the highest validation accuracy was selected. We employed the categorical 

cross-entropy loss function, a batch size of 32, and the Adam optimizer with a learning rate 

of 5e-4. Afterwards, we utilized transfer learning by training the models with pre-trained 

weights. The weights were acquired using models that were pre-trained on ImageNet. The 

dataset was randomly divided into three parts: 70% for training, 20% for validation, and 

10% for testing. 

 

4.3. Model Evaluation 

We evaluated each model on the test set, which was not used during the training phase. As 

evaluation metrics, we compute the Top-1 accuracy and the precision/recall curves. For our 

experiments, we used Pytorch: A Colab pro+ machine with NVIDIA V100 GPU. 

 

4.4. The Effect of Using Geometric Data Augmentation Techniques 

Our enhanced DWSC-Swin Transformer model demonstrates superior classification 

performance on the EuroSat dataset, surpassing the baseline and other state-of-the-

art Transformer architectures. The integration of DWSC-MSA blocks significantly 

improves the model's ability to capture and prioritize relevant features, resulting in 

more accurate land use and land cover classification.  Geometric augmentation 

techniques, including rotation, horizontal flipping, and vertical flipping, were 

employed in this study to enhance the robustness of the model. Fig 4-(a) and Fig 4-

(b) show the best validation accuracies for Transformer models with and without 

implementing geometric augmentation. As illustrated, the proposed DWSC-Swin 
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Small model achieved the highest accuracy in both scenarios, demonstrating its 

robustness and effectiveness. 

 No Data Augmentation (Baseline Data): The DWSC-Swin Small model achieved a 

validation accuracy of 99.22%, outperforming CrossViT Small (98.82%), ConViT 

Small (98.82%), Swin-Base (99%), Swin-Small (99.04%), and Swin-Tiny (99%). 

 Geometric Augmentation: With geometric augmentation, the DWSC-Swin Small 

model maintained its leading performance with a validation accuracy of 99.22%, 

compared to CrossViT Small (98.89%), ConViT Small (98.78%), Swin-Base 

(98.81%), Swin-Small (99%), and Swin-Tiny (98.44%). 

These results confirm that our proposed model not only excels in accuracy but also 

demonstrates robustness across various data augmentation strategies, making it 

highly effective for land use and land cover classification on the EuroSat dataset. 

 

Fig 4. The comparison results in case of using Validating data without(a)\(b) with 
using Geometric data augmentation techniques. 

 

5 Discussion 

Our results reveal that the proposed model much outperforms competing transformer-

based designs in land use and land cover classification tasks. We have overcome the 

constraints of current models and thereby raised classification accuracy and efficiency by 

including DWSC-MSA methods into the Swin Transformer design. 

 

5.1. Comparative Analysis 

Our enhanced Swin Transformer, incorporating the Depth-wise Separable Convolutional 

Multi-Head Self-Attention (DWSC-MSA) mechanism, was evaluated against several state-

of-the-art transformer architectures, including the original Swin Transformer, ConViT, and 

CrossViT. The evaluation metrics included Area Under the Curve (AUC), F1-score, and 

overall classification accuracy on the Eurosat dataset as shown in Fig (5), Table (1), and 

Table (2). 
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(a) (b) 

  
Fig 5. Using testing data both with (a) and without (b) geometric data augmentation 

methods produce comparative results. 
 

A- Baseline Eurosat Dataset 

 

 Test Accuracy: The proposed DWSC-Swin Small model achieved a classification 

accuracy of 99.11%, outperforming Swin-Tiny (98.67%), Swin-Small (98.19%), 

Swin-Base (98.41%), ConViT Small (98.85%), and CrossViT Small (98.91%) as 

shown in Fig (5-a). This substantial improvement demonstrates the effectiveness of 

the DWSC-MSA mechanism in capturing spatial relationships and channel-wise 

dependencies more accurately than traditional self-attention mechanisms. 

 

 AUC and F1-Score: Our model achieved an AUC of 0.9999 and an F1-score of 

0.9911. In comparison, Swin-Tiny had an AUC of 0.9997 and an F1-score of 0.9867, 

Swin-Small had an AUC of 0.9996 and an F1-score of 0.9819, Swin-Base had an 

AUC of 0.9996 and an F1-score of 0.9840, ConViT Small had an AUC of 0.9997 

and an F1-score of 0.9885, and CrossViT Small had an AUC of 0.9997 and an F1-

score of 0.9891. The DWSC-Swin Small model's superior F1-score indicates a more 

balanced performance across different classes, essential for robust land use and land 

cover classification. 

 

B- Eurosat Dataset with Geometric Augmentation 

 

 Test Accuracy: On the augmented dataset, the DWSC-Swin Small model 

maintained its lead with a classification accuracy of 99.00%, compared to Swin-Tiny 

(98.78%), Swin-Small (98.67%), Swin-Base (98.72%), ConViT Small (97.94%), and 

CrossViT Small (98.72%), as shown in Fig(5-b). This result underscores the model's 

robustness to geometric transformations. 

 

 AUC and F1-Score: The DWSC-Swin Small model achieved an AUC of 0.9998 

and an F1-score of 0.99. Swin-Tiny had an AUC of 0.9997 and an F1-score of 0.9878, 

Swin-Small had an AUC of 0.9997 and an F1-score of 0.9867, Swin-Base had an 

AUC of 0.9997 and an F1-score of 0.9872, ConViT Small had an AUC of 0.9996 

and an F1-score of 0.9795, and CrossViT Small had an AUC of 0.9996 and an F1-

score of 0.9872. The superior performance of our model highlights its ability to 
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maintain high accuracy and balanced precision and recall even under augmented 

conditions. 

 

Overall, the proposed DWSC-Swin Small model consistently outperforms other 

transformers across various metrics, demonstrating its effectiveness for land use and 

land cover classification on the Eurosat dataset. The improvements can be attributed 

to the DWSC-MSA mechanism, which enhances feature extraction by capturing fine-

grained spatial relationships and channel-wise dependencies more effectively than 

conventional self-attention mechanisms. 

 
 
Table 1: The comparison results of the proposed method with the others based on 

Eurosat dataset. 
 

Transformer AUC F1 

Swin-Tiny 0.9997 0.9867 

Swin-Small 0.9996 0.9819 

Swin-Base 0.9996 0.9840 

ConViT Small 0.9997 0.9885 

CrossViT Small 0.9997 0.9891 

DWSC-Swin 

Small 

0.9999 0.9911 

 
 
 
Table 2: Performance measures of Transformers on Eurosat dataset with Geometric 

Augmentation. 
 

 
 
 
 
 

 

5.2. Computational Efficiency 

Apart from improved accuracy, our proposed model exhibits less number of parameters 

than the original Swin Small model. 

 Faster training times and less memory use resulting from this reduction assist the model 

Transformer AUC F1 

Swin-Tiny 0.9997 0.9878 

Swin-Small 0.9997 0.9867 

Swin-Base 0.9997 0.9872 

ConViT Small 0.9996 0.9795 

CrossViT Small 0.9996 0.9872 

DWSC-Swin 

Small 

0.9998 0.99 
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to be more scalable and efficient. Good depth-wise separable convolution parameter 

application aids in the decrease's accomplishment.  

 The 49,606,258 parameters count of the first Swin small model. 

 The new DWSCMSA-Swin compact model has 48,844,948 parameters. 

This parameter reduction along with the higher validation accuracy highlights the efficacy 

of our approach in enhancing the Swin Transformer architecture for the specific goal of 

land use and land cover categorization. 

 

5.3. Qualitative Analysis  

A visual examination of the classification results confirmed the efficacy of our strategy. 

The improved DWSC-Swin Transformer generated more precise and reliable segmentation 

maps, particularly in complex scenarios with varied land cover types. The model showed 

higher performance in differentiating between comparable categories, such as various 

agricultural field kinds, outperforming previous transformers and underscoring its 

outstanding feature extraction and classification abilities. 

We provide confusion matrices in Fig. 6 that provide a complete picture of the model's 

classification performance to help to understand all of this. These matrices exhibit the 

perfect accuracy of the model in separating many land cover types, therefore demonstrating 

its dependability and strength. Including the confusion matrices gives a more complete and 

graphic view of the performance of the model, therefore strengthening your qualitative 

evaluation. 

 

 

6 Conclusion and Future Work 

Depth-wise Separable Convolutional Multi-Head Self-Attention combined into the 

proposed Swin Transformer architecture has shown quite remarkable efficiency in land 

use and land cover categorization. The potential of our technique for numerous remote 

sensing applications are highlighted by the increased accuracy, precision, recall, and 

processing economy. 

Future research will examine more enhancements to the DWSC-MSA method, 

interactions with other advanced transformer designs, and other applications for extra 

remote sensing data. The positive results facilitate the continued use of transformer-

based models in several fields of computer vision including geospatial analysis. 
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(a) No-Aug. 

 
(b) Geo-Aug. 

 
Fig 6. Confusing matrices result from test results on transformers on 

Baseline/Geometric Augmentation. 
 

 

 

Data Availability Statement: Online copies of the relevant research datasets 

are available. For free one may get the EuroSAT dataset [25]. Upon request, the first 

author might provide datasets generated for this study. 
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