
DOI: 10.15849/IJASCA.250330.11 

 

Received 4 January 2025; Accepted 25 February 2025 

 

Int. J. Advance Soft Compu. Appl, Vol. 17, No. 1, March 2025 
Print ISSN: 2710-1274, Online ISSN: 2074-8523 

Copyright © Al-Zaytoonah University of Jordan (ZUJ) 

 

Multi-class Lung Disease Classification Using 

Convolutional Neural Networks 

Ola Refai Momani1* and Mohammad Belal Al-Zoubi2 and Marwan Al Tawil3 

 
1,2,3 Department of Computer Information System 

University of Jordan 

Amman-Jordan 
Emails: Olamojor@gmail.com,1, mba@ju.edu.jo2, m.alTawil@ju.edu.jo 3 

 

Abstract 
 

Lung diseases place a significant and growing burden on global healthcare 
systems. However, any technological tool that enables rapid and highly accurate 
screening of lung diseases can be crucially beneficial to healthcare professionals. 
Deep learning algorithms are critical in disease identification and medical 
decision-making, analyzing vast datasets, and uncovering patterns beyond 
human perception. This study aims to comprehensively evaluate artificial 
intelligence-based segmentation algorithms and their efficacy in segmenting X-
ray images, three public Convolution Neural Networks (CNN)-based semantic 
segmentation models: Fully Convolutional Network (FCN) using pre-trained 
VGG16, (U-Net) trained from scratch, and (LinkNet) provided by Keras, the lung 
area was segmented and then fed to Convolutional Neural Networks to classify 
the CRX into four classes of lung diseases. Five different pre-trained CNN 
architectures (Xception, VGG16, ResNet50V2, MobileNetV2, and DenseNet201) 
were investigated on the plain and segmented lung CXR images. An image pre-
processing pipeline was used in this research to enhance the classification 
process. The results of our experiments show that LinkNet by Keras 
outperformed the other segmentation networks in terms of accuracy, Jaccard, 
Dice, and Mean IoU of 98.13, 92.64, 96.09, and 96.49 respectively. The 
classification results show that classification performance from plain Chest X-
ray images is better than the segmented; theDenesNet201 obtained the best 
classification results of non-segmented images with accuracy, F1-Score 91.32, 
91.30, respectively. 

Keywords: Image Segmentation, Convolution Neural Networks, Deep Learning, 

Transfer Learning, X-Ray Images. 

1.  Introduction 
Chest X-rays (CXR), ultrasounds, and magnetic resonance imaging (MRI) are used to 

detect lung diseases and diagnose respiratory infections such as COVID-19, viral pneumonia, 

and lung opacity. Medical experts often face challenges in accurately diagnosing these diseases 

due to the similarity of their pathological symptoms. In recent years, computer-aided diagnosis 
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(CAD) systems and artificial intelligence (AI) algorithms have been employed to identify 

diseases and support medical decisions before treatment begins. Physicians and radiologists 

can leverage CAD systems, AI, and data mining to gain new insights into medical data, thereby 

complementing and enhancing their expertise. One of the most significant features of AI and 

machine learning is their ability to process vast amounts of data and learn from it, enabling the 

extraction of subtle features that might go unnoticed by the human eye. [1], [2]. 

In recent years, extensive research has focused on applying neural networks and deep 

learning technologies to X-ray images for lung disease detection. Convolutional Neural 

Networks (CNNs) are designed to analyze multi-dimensional inputs such as images for 

classification and recognition [1],[3],[4],[5]. 

  These networks have demonstrated significant success and notable advancements in 

both accuracy and computational efficiency, as highlighted in studies[1],[6],[7]. In medical 

applications, CNNs have proven effective in classifying conditions such as brain tumors, breast 

cancer, pneumonia, arterial disorders, and throat conditions, as well as in detecting COVID-19 

[8],[9],[10],[11]. 

During the COVID-19 pandemic, many researchers applied CNNs to detect the disease. 

Some focused on segmentation techniques, while others relied solely on classification 

methods. The high performance and accuracy of both segmentation and classification 

approaches have paved the way for enhanced automated clinical systems, aiding doctors and 

radiologists in making more informed patient care decisions [12]. 

Segmentation approaches using CNN networks are mainly based on FCN, which consists 

of an encoder and decoder [6], [13]. Various deep learning (DL) networks have been utilized 

for segmentation, including U-Net, which is widely used in medical image segmentation due 

to its skip connections between the encoder and decoder [10], [14]. LinkNet, now available by 

Keras, is recognized for its efficiency in real-time applications and has been mainly used in 

self-driving and augmented reality [15]. Several researchers have achieved high accuracy in 

detecting COVID-19 using segmentation techniques[16],[17],[18],[19],[20]. However, others 

have found that segmentation does not provide a competitive advantage in classifying COVID-

19. Some studies have even reported that classification without segmentation yielded higher 

accuracy than using segmentation [6],[14]. 

      A significant challenge in most of these studies is the limited availability of X-ray images 

of lung diseases, resulting in insufficient data for training and testing. This limitation affects 

the ability to properly train deep learning models and assess the reliability of machine learning 

approaches for use as assistive tools in the medical field [21],[22].        

One solution to the limited availability of annotated medical images is transfer learning, 

which leverages pre-trained CNN models that have been trained on large datasets. However, 

many researchers have reported that ImageNet pre-trained networks may not accurately extract 

reliable feature representations from medical images, as they were originally trained on natural 

images rather than medical data [14],[22],[23],[24],[24]. Another effective approach to address 

this issue is data augmentation, which significantly increases data diversity during training and 

helps reduce overfitting caused by limited datasets [6],[7],[25],[14]. 

Medical images often suffer from noise, artifacts, low contrast, or poor quality, which 

can lead to incorrect diagnoses. Low-quality images are a major cause of inaccurate 

predictions. Another challenge in lung disease datasets is low resolution, which can hinder the 

extraction of essential features using neural networks [6], [7], [26], [13], [14], [22], [23], [27], 
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[28], [29], [30]. Therefore, a pre-processing step is crucial [31], [32], [33], [34]. Various 

techniques have been applied to enhance the quality of medical images, including edge 

detection [12], cropping images [25], and removing the majority of the diaphragm [35]. 

Additionally, contrast enhancement such as CLAHE, N-CLAHE, Gamma correction, 

Complement, and BCET filter, with different parameter values and settings have been used to 

improve image clarity and feature extraction[6],[19],[26].  

       This paper presents a pre-processing pipeline to improve the quality of X-ray images. It 

then classifies the COVID-19 CHEST X-RAY DATABASE into 4 classes by comparing and 

selecting the best pre-trained CNN architecture. This comparison includes using a 

segmentation approach and a non-segmentation approach. 

         The primary contributions of this research are: 

1. Comparison of three different Neural Networks (U-Net, FCN, LinkNet) for segmentation 

to determine the most reliable approach for detecting lung diseases. 

2. Proposal of a pre-processing pipeline to enhance chest X-ray images for accurate 

classification by five pre-trained CNNs (Xception, VGG16, MobileNetV2, ResNet50V2, and 

DenseNet201). The classification encompasses four classes (COVID-19, Viral Pneumonia, 

Normal, and Lung Opacity). 

3. Comparison of the classification process with and without segmentation and subsequent 

analysis of the reasons behind these results. 

The work is organized as follows. Section two summarizes the literature about COVID-

19 detection and classification with and without segmentation. The methodology and the 

dataset description are clarified in section three.  Experimental work, comparisons, results, and 

discussions of our experiments are clarified in sections Four and Five. Finally, the conclusions 

and future works are summarized in section Six. 

 

2-Literature Review 
Many studies have used machine learning to develop COVID-19 classification systems, 

primarily by employing Convolutional Neural Networks (CNN). This section explores two 

approaches for detecting COVID-19: those that utilize segmentation and those that do not. 

2.1. COVID-19 detection without segmentation  
Many researchers have proposed different ML approaches to detect COVID-19 using 

raw X-ray images. Some researchers have used transfer learning of well-known networks, and 

others have modified these architectures, or designed new ones to detect COVID-19.  

The COVINet model was proposed by [12]. It used two different datasets. The first 

contains 79 images for each COVID-19 and bacterial pneumonia, and another dataset contains 

78 X-ray images of COVID-19 and 28 images for normal people. The model applied edge 

detection using a value-based filter ([0,-1,0],[-1,6,-1],[0,-1,0]) through the proposed pre-

processing pipeline, the results showed an accuracy of 0.85 and AUC 0.59480. 

COVID-Net was introduced by [36], an open-source network architecture designed to 

detect COVID-19 cases from chest X-ray images, they got an accuracy of 93.3 and a sensitivity 

of 91.0. The CoroNet model was proposed by [37], the proposed CoroNet model which is 

based on Xception architecture, for 4 classes. The researchers achieved precision and recall 

rates of 93% and 98.2% respectively. HCN model was proposed by [24] which uses the first 

convolution layer from COVIDNet (since it was trained using X-ray images) then followed by 
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the convolutional layers from well-known pre-trained networks to extract the features, they got 

accuracy, sensitivity, specificity, and precision of 96.67, 96.08, 96.97 and 98.00 respectively. 

To address the challenge of a small dataset, [23] introduced a Convolutional Neural 

Network (CNN) architecture based on class decomposition with pre-trained models. They 

employed Principal Component Analysis (PCA) to mitigate high dimensionality, creating 

more uniform classes and lowering memory demands. Additionally, k-means clustering was 

applied during the class decomposition phase. Their approach yielded impressive results, 

accomplishing an accuracy of 97.35%, a sensitivity of 98.23%, and a specificity of 96.34%. 

The CoroDet is a deep learning-based classification for COVID-19 detection proposed 

by [38], they used the COVID-R dataset that contains 7390 X-ray images of 4 classes. The 

study trained their model using 5-fold cross-validation, the accuracy of the proposed model 

was 99.1% for 2 classes, 94.2% for 3 class cases, and 91.2% for 4 class classifications. 

A comparison study was made by [28], they compared two pre-trained CNNs using 

transfer learning: VGG19 and MobileNetV2 using two different datasets. The study concluded 

that DL may extract COVID-19 disease, but showed that more research is needed to evaluate 

the X-ray images with the corporation with the medical community. According to the study, 

the best accuracy, sensitivity, and specificity obtained were 96.78%, 98.66%, and 96.46% 

respectively. They concluded that MobileNet-v2 outperforms VGG19 in terms of specificity. 

The evaluations were made using 10-fold cross-validation. Another comparison between nine 

pre-trained convolutional neural networks was made by [22]. They used 5-fold cross-

validation. The pre-trained model Se-ResNeXt-50 achieved the highest classification accuracy 

among the other architectures, the accuracy was 99.32% for the binary class and 97.55% for 

multi-class.  

Eight different popular CNNs were compared by [39]. The researchers used transfer 

learning using 5-fold cross-validation. the results indicated the superiority of   DenseNet201 

which is a deep network. They concluded that deep networks perform better than shallow 

networks. The experiment accuracy was 97.94 sensitivity, 97.94 precision, 97.95 

Specificity,98.80 F1-score,97.94 for 3 classes. 

To put the results in perspective, Table 1 illustrates a summary of DL approaches for 

detecting COVID-19 without using segmentation. 

 
TABLE 1 

 DL-based methods for detection of COVID-19 images without using segmentation approaches 

Reference

s 

Strate

gy  

Dataset  Classificati

on 

Acc. 

(%) 

Sens. 

(%) 

Spec. 

(%) 

Pre. 

(%) 

F1-

score 

(%) 

[40] RAM-

Net 
COVIDx dataset of 

13675  X-ray 

3 

classes 

95.33 92 - 99 - 

[8] CNN-

LSTM 
Dataset of 4575 X-ray 

images 

3 

classes 

99.4 99.3 99.2 - 98.9 

[12]  COVI

Net 
Dataset1: 158 images 

Dataset2: 106 X-ray 

images 

4 

classes 

0.85   0.9899 0.9219 - - 

[36] COVI

D-Net 
COVIDx of 13,975 

CXR 

3 

classes 

93.3 91.0 - - - 

[41] DarkC

ovidNet + 

YOLO 

1125 X-ray images 2 

class  

98.08 

87.02 

95.13 

85.35 

95.30 

92.18 

- 96.51 

87.37 
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3 

class 

[37] CoroN

et 
1300 X-ray images 2 

class  

3 

class 

4 

class  

99 

95 

89.6 

99.3 

96.9 

89.92 

98.6 

97.5 

96.4 

98.3 

95 

90 

98.5 

95.6 

89.8 

[35] CAD 

system 

(remov

es 

diaphrag

m) /pre-

trained 

VGG16. 

Dataset of 8474 X-ray 

images 

3 

classes 

94.5 98.4 98.0 - - 

[23] DeTra

C 

 

Dataset1: JSRT 

Dataset2: 116 (with 

4248 × 3480 pixels). 

3 

classes 

97.35 98.23 96.34 - - 

[24] HCN-

DML 

model 

COVIDx of 13,975 

CXR 

3 

classes 

96.67 96.08 96.97 98.00  

[42] ResNet

101 plus 

J48 

100 X-ray images 2 

classes 

98.54 99.32 97.4 99.32 98.53 

[38] 

 

 

CoroD

et 
COVID-R of 7390 x-

ray images 

2 

class  

3 

class 

4 

class. 

99.12 

94.2 

91.2 

95.36 

92.76 

91.76 

97.36 

94.56 

93.48 

97.64 

94.04 

92.04 

96.88 

91.32 

90.04 

[27] Faster 

R–CNN 
X-Ray of 13800 

images 

 

2 

classes 

97.36 97.65 - 99.28 - 

[43] Fractal

CovNet 

 

Dataset1-6078 Xray 

images 

Dataset2-6278 Xray 

images 

2-

classes 

0.98 0.94 - 0.88 0.92 

[28]  Mobile

Net v2 

With 

transfer 

learning 

Dataset1: 1427 X-ray 

images 

Dataset2: 1442 X-ray 

images 

 

2 

class 

 

3 

class 

96.78 

 

94.72 

98.66 

 

- 

96.46 

 

- 

- 

 

- 

- 

 

- 

[22] Transf

er 

learning 

/Se-

ResNeXt-

50. 

 

1- Dataset of 1428 X-

ray images 

2- dataset of 1442 X-

ray images 

3- 5232 X-ray images 

 

2 

class  

 

4 

class. 

98.36 

 

96.99 

99.11 

 

94.67 

98.02 

 

97.43 

95.76 

 

87.36 

97.4 

 

90.86 

[39] Dense

Net201 

/Transf

er 

learning 

Dataset of 3487 X-ray 

images 

2 

class  

 

3 

class. 

99.70 

 

97.94 

99.70 

 

97.94 

99.55 

 

98.80 

99.70 

 

97.95 

99.69 

 

98.80 
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Most of the studies in Table 1 used a transfer learning approach  [22],[23],[28],[35],[39].  

Transfer learning is known as the process of using a pre-trained model on a new problem. 

These models were trained using millions of available labeled training data, then instead of 

starting the learning process from scratch, the weights of the pre-trained model are used to 

perform a new task. Other researchers have trained their models from scratch using small 

datasets, such as researchers in [8] who used 4575 X-ray images to train their proposed model 

CNN-LSTM. Also, DarkCovidNet, designed by [41], was trained using 1125 X-ray images. In 

our research, we will use transfer learning to classify a dataset of 21,165 CXR images. 

 

2.2. COVID-19 detection using Lung segmentation  
Image segmentation has become increasingly important in radiology research and clinical 

practice [11],[17]. Many researchers have used different segmentation techniques. The 

following part discusses the state-of-the-art segmentation approaches used to detect COVID-

19 using Neural networks. 

The U-Net has been used in many researches, either by making modifications on U-Net, or 

by using U-Net embedded with the proposed model. A modified version of U-net architecture 

was proposed by [6] for lung segmentation from the X-ray images that have outperformed the 

U-net model then they made a classification using DenseNet201 with Gamma enhancement, 

they applied 5-fold cross-validation to have the accuracy, precision, and recall of 95.11%, 

94.55%, and 94.56% respectively, they used the COVQU Dataset of 18479  CXR for 

classification and the same dataset with corresponding masks to train the proposed model. 

Attention U-Net (CXAU-Net) proposed by [19] for multi-class segmentation, that can be used 

to detect COVID-19 abnormalities from the chest X-ray images such as Ground-glass opacity 

(GGOs) and cardiomegaly. They applied spatial and channel attention, they also proposed a 

hybrid loss function for the model. The resulting accuracy was 95.15% using 840 X-ray images 

of COVID-19.  

Another research has proposed by [44], they applied DenseNet103 based U-Net for 

segmentation of both the encoder and decoder frame, then the classification process was made 

using an ensemble model (EfficientNetB0, DenseNet121, VGG-19 ), they used 6581 X-ray 

images, the average IoU score was 0.90% and Dice coefficient of 0.92% finally the 

classification accuracy of COVID-19 was 99.2%.  

Some researchers used the U-Net embedded with their proposed model [13],[14],[18],[45]. 

A channel-shuffled dual-branched architecture called CSDB with Distinctive Filter Learning 

(DFL) was proposed by [13]. The model contained a pre-trained UNet2D_4L for segmentation. 

They got accuracy, sensitivity, specificity, precision, f1-score, and AUC 97.94%, 97.54%, 

99.25%, 96.34%, 96.90%, and 98.39% respectively. [14] proposed a High-Resolution Network 

(HRNet) for feature extraction embedding with the U-Net for segmentation, where different 

types of convolutional resolutions are linked in a parallel manner, as the first step of their work 

they trained the UNet model with the MC dataset. They used the generated model weights to 

get segmented lung images from the COVID dataset. They applied a region-based threshold to 

distinguish the pixels that would give the best segmentation lung area. They also utilized 

COVID and non-COVID-19 X-Ray datasets. Their results confirmed 99.26% accuracy, 

98.53% sensitivity, and 98.82% specificity. On the other hand, on applying the experiments on 

plain X-ray images using HRNet. they achieved a higher accuracy of 100%. 
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In addition, segmentation research in [18] was made using the CT-Scan images. It has 

proposed a mechanism for the automatic segmentation of COVID-19 regions in CT images 

using a SegNet-based network with an attention gate (AG), the dataset contains 473 CT scan 

images and 100 CT with its ground truth, and the segmentation procedure was embedded in 

the proposed model, they obtained sensitivity, specificity, and dice scores of 92.73%, 99.51%, 

and 89.61%, respectively.  

A Dual-branch combination network (DCN) based on U-net was proposed by [45]. The 

framework is a lung segmentation network to extract accurate lung regions and then classify 

the CT-scan images into Covid or Non-COVID-19 patients. A total of 1918 CT scans were 

used in their study. The findings indicated a slice-level accuracy of 95.99% an individual-level 

accuracy of 96.74%, a slice-level AUC of 0.9755, and an individual-level AUC of 0.9864.  

Table 2. illustrates a summary of approaches for detecting COVID-19 using Lung 

segmentation models. Most of the previous studies have focused on classifying their datasets 

into two classes: COVID-19 and non-COVID-19. While other research classified the dataset 

into three and four classes. The work in [6] classified their dataset into three classes  Covid, 

Non-COVID-19, and Normal. Another study has classified the dataset into four classes: 

COVID-19, Normal, Bacterial Pneumonia, and Viral Pneumonia [13]. This current research 

will classify the dataset into four classes: COVID-19, Viral Pneumonia, Normal, and lung 

Opacity. 
 

TABLE 2 

 DL-based methods for detection of COVID-19 images using Lung segmentation models. 

Refe

rences 

Strategy  Dataset  Clas

sificati

on 

Acc. 

(%) 

Sens. 

(%) 

Spec. 

(%) 

Pre. 

(%) 

F1-

score 

(%) 

[6] Modified  

U-Net. 

Classifier is  

DenseNet20

1 

COVQU 

Dataset of 

18,479 CXR 

 

3-

classes 

95.11  94.56  95.59  94.55  

94.53 

[13] UNet2D_4

L within 

CSDB-DFL 

CNN 

model 

Collection 

of datasets of 

12,393 X-ray 

images. 

4-

classes 

97.94 97.54 99.25 96.34 96.90 

[18] SegNet-

based network 

with an 

attention gate 

(AG), U-Net 

embedded 

with the 

model. 

 

473 CT 

images. and  

100 CT 

with its GT 

2-

classes 

- 92.73 99.51 - 89.61 

[44]  DenseNet10

3 based U-Net 

6581 X-

ray images 

2-

classes 

99.2 - - - - 

[45] DCN- with 

U-Net 

1918 CT 

scans 

2-

classes 

92.87 92.86 92.91 - - 



 

Momani et al.                                                                                                                   198 

[46]  HRNet- 

with U-Net 

Segmentat

ion Dataset: 

MC 

Classificat

ion: 2472 X-

ray images 

2-

classes 

99.26 98.53 98.82 - 99.25 

 

In both previous methods -whether with or without segmentation- the results lack 

generalizability due to the small dataset sizes and the limited number of lung disease classes, 

typically fewer than four. The highest accuracy obtained when classifying plain medical 

images was 97.94 with an F1-score of 98.80, However, this was based on a dataset of only 

3,487 CXR images classified into three categories [39]. In contrast, using the segmentation 

approach, the highest accuracy reached 99.26 with an F1-score of 99.25, but this dataset 

contained just 2,472 CXR images classified into only two categories [46]. In this research, we 

aim to compare both methods using a significantly larger dataset of 21,165 CXR images 

spanning four distinct classes, providing a more comprehensive evaluation. 

 

3. Methods 
3.1. Approach 

Fig. 1. illustrates the proposed approach, which involves the use of two different datasets: 

the Lung segmentation dataset and the Lung classification dataset. The major experiments that 

are carried out in this study are: 

1- Comparing the performance of three different segmentation neural networks (FCN, U-

Net, and LinkNet) to choose the best architecture to make segmentation of the dataset.  

2-    Proposing a preprocessing pipeline to enhance the quality of the X-ray images. 

3- Evaluating five pre-trained deep-learning networks (Xception, VGG16, DenseNet201, 

ResNet50V2, and MobileNetV2) for lung disease classification using raw X-ray 

images that are not segmented,  as well as using images that have been segmented using 

the best segmentation model along with the calculation of different performance 

metrics to evaluate the performance of the networks. 

Pseudo-codes are illustrated in Fig. 2. And 3. 
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Fig.1: Diagram of Research Methodology 

 

Fig.2: Pseudo-Code for Non-Segmentation Approach 

Pseudo-Code #1: Non-Segmentation Approach 

1- Input: COVQU 2nd update dataset, contains 21,165 CXR images. 

2- Preprocessing:  

2.1. Resize images to fit CNN models (Xception, VGG16, 

DenseNet201, ResNet50V2, and MobileNetV2). 

   2.2. Preprocessing pipeline. 

   2.3. Data augmentation. 

3- Split train data 80%, test 10%, and validation 10%. 

4- Fine-tuning to the pre-trained CNN models. 

5- Classify images. 
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Fig.3: Pseudo-Code for Segmentation Approach 

3.2. Dataset’s description 
Two datasets are used. The first dataset is used to train, evaluate, and compare the segmentation 

approaches, and the second dataset is used for COVID-19 detection.  

3.2.1. Dataset for Lung Segmentation 

To investigate lung segmentation models the study has used NLM-The Shenzhen and 

Montgomery County (MC) CXR Datasets available by Kaggle [47] which consists of 704 CXR 

images with the corresponding lung masks. The Dataset has been used in many articles 

[17],[19],[48],[49],[50] for training and testing different segmentation models, where annotation 

was made under the supervision of expert radiologists; the dataset contains both normal and 

abnormal X-ray lung images that are affected by tuberculosis. A sum of 360 images used are 

normal and 344 are infected lung images. Table 3 summarizes this information.  

 
 Table 3. Datasets -lung segmentation 

 

 

3.2.2. Dataset for image classification 

This research uses the COVID-19 CHEST X-RAY DATABASE [6],[39] which is 

known as COVQU 2nd update  dataset, it is one of the largest public COVID-19 positive cases 

datasets. It contains 21,165 CXR images of four classes; Normal, COVID-19, Pneumonia, and 

Lung Opacity disease, The dataset is a combination of the Radiological Society of North 

America (RSNA) CXR dataset and COVID-19 dataset. The details of this dataset are in Table 

4.  

NLM-The Shenzhen and 

Montgomery County (MC) CXR 

Datasets 

Normal Lungs Abnormal Lungs (tuberculosis disease) 

704 X-ray images and masks 360 344 

Pseudo-Code #2: Segmentation Approach 

1- Input: (MC) CXR Datasets of 704 images with the corresponding ground truth. 

2- Split train data 80%, test 10%, and validation 10%. 

3- Train each model as follows: 

   3.1. U-Net from scratch. 

3.2. Fine-tuning to the models: (FCN) using pre-trained VGG16, 

and (LinkNet) provided by Keras 

4- Compare between previous models by performance metrics. 

5- Select the best segmentation approach. 

6- Input: COVQU 2nd update dataset, contains 21,165 CXR images. 

7- Segment COVQU 2nd update dataset. 

8- Qualitative check of the resulting images. 

9- Go to step 2 in pseudo-code#1 to continue. 
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Table 4. Datasets -image classification 

Lung Conditions Number of images 

COVID-19 3616 CXR images 

Lung- Opacity 6012 CXR images 

Normal lung 10192 CXR images 

Pneumonia 1345 CXR images 

Summation 21,165 CXR images   

 

3.3. Pre-processing and data augmentation 
3.3.1. Pre-processing 

Images in the classification dataset (COVQU) were resized to fit the input size of the pre-

trained models. For the Xception model, images are resized into 299x299, for other models’ 

images are resized into 244x244. Then the proposed pre-processing pipeline was used to 

enhance the quality of X-ray images. All original CXR images are in Portable Network 

Graphics (PNG) format of size 299x299x3. Fig. 4. shows the proposed pre-processing pipeline. 

First, CLAHE is applied for contrast enhancements followed by Gamma correction for further 

enhancement of low contrast in X-ray images. Then noise reduction is applied by using a 

Bilateral filter. An example is presented in Fig. 5, showing an X-ray image before and after 

the application of each process, along with the corresponding histogram. 
 

 

 

 

 

 

 

 

 

 

Fig. 4: pipeline of the pre-processing phase. 

For the segmentation dataset, images were resized to 256x256 to fit the input size of U-Net 

and LinkNet architectures. For the FCN model images were resized to 128x128.  The 

normalization step is made by a division of 255.0 to all models. The corresponding ground 

truth is a black-and-white image, where black is given the value of zero, representing the 

background, and white has the value of one, which represents the region of interest. 
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Fig.5: an example of an X-ray image going through the image processing pipeline 

 

3.3.2. Data Augmentation 

 

Deep learning techniques require huge amounts of images to be trained, lack of medical 

images will cause unbalanced data that will affect the algorithm's accuracy and loss 

[5],[6],[9],[12],[16],[22],[23],[26],[35],[40],[43]. Therefore, the Keras ImageDataGenerator 

class is used in this research to generate thousands of images during training time. For the 

UNet, FCN, and LinkNet, we applied the parameters: Rotation_range=25, 

Width_shift_range=0.2, Height_shift_range=0.2, Zoom=0.15, Horizontal_flip=True, 

Fill_mode= Reflect. For classification experiments, the same parameters except the 

Fill_mode= Nearest. 

 

3.4. Experimental Setup 

 
Datasets are split into the following proportions: 80% for training, 10% for validation, and 

10% for testing. Tables 5 and 6 explain the details of training, validation, and test X-ray images 

for both datasets. All experiments conducted in this study are carried out using TensorFlow 

version 2.6.0, Python 3.8.8, Processor 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30GHz, 

RAM 16.0 GB, Intel(R) UHD Graphics, NVIDIA GeForce RTX 3060 GPU. Each of our 

experiments will be discussed separately. 

 
Table 5. Details of the segmentation dataset used for training, validation, and testing 

Total Dataset Training 

Set 

Number 

of 

Augmented 

images 

Resulted 

Training set 

Validation 

set 

Testing set 

704 CXR 

images 

563 55350 55913 70 71 

 

Table 6: Details of the classification dataset used for training, validation, and testing 
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Total 

Dataset 

Types Training 

Set 

Number of 

Augmented 

images 

Resulted 

Training set 

Validation 

set 

Testing 

set 

21,165 

CXR 

images 

COVID-19 2893 5261 8154 361 363 

 Normal 8154 0 8154 1019 1020 

 Viral 

pneumonia 

1076 7078 8154 134 136 

 Lung 

Opacity 

4810 3344 8154 601 602 

 

3.5. Experiments on Lung Segmentation 

 
Three state-of-the-art semantic segmentation architectures are applied on the MC Dataset: 

(FCN) using pre-trained VGG16, (U-Net) trained from scratch, and (LinkNet) provided by 

Keras. FCN8, U-Net, and LinkNet models were trained for 100 epochs, no early stopping, 

using Adam optimizer, with the learning rate of 1e-4, batch size of 4, the loss function is Binary 

Focal Loss of gamma=2, Batch normalization was used in U-Net architecture. 

 

3.6. Experiments on Lung Classification 

 
The transfer learning approach is investigated for classification experiments for segmented 

and plain images. For this purpose, CNNs are applied (Xception, VGG16, ResNet50V2, 

MobileNetV2, and DenseNet201). The models are fine-tuned and trained for 50 epochs, with 

a batch size of 4, Stochastic Gradient Descent (SGD) optimizer with exponential decay for 

better convergence during training and validation, the learning rate starts with 1e-5, 

Momentum 0.9, Categorical-Cross-Entropy loss function, no early stopping was investigated. 

 

3.7. Performance evaluation matrix 

 
3.7.1. Evaluation matrix of lung segmentation 

 

To compare the segmentation approaches, we used the same input images with the 

corresponding ground-truth masks. We used the same augmentation parameters for the training 

phase to be fed to our networks (FCN8, U-Net, LinkNet). The performance of each network 

was evaluated after the completion of the training and validation phase. In addition to the 

processing time, we used five performance metrics: accuracy, Intersection-Over-Union (IoU) 

or the Jaccard Index [17] [19] [29] [51], Dice Coefficient (or F1-score), Recall (or Sensitivity), 

Precision, and Mean IoU. All the metrics are shown in equations 1-5. 

 

Accuracy (Acc) = 
(𝑇𝑃 + 𝑇𝑁) 

(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑃 + 𝑇𝑁) 
 (1) 

Jaccard Index (IoU) = 
(𝑇𝑃) 

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) 
 (2) 

Dice Coefficient (F1-score) =
(2∗𝑇𝑃) 

(2∗𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) 
 (3) 
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Recall (Sensitivity) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

Precision (Pre) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

Where TP, TN, FP, and FN represent the number of true positives, true negatives, false 

positives, and false negatives, respectively.  
 

3.7.2. Evaluation matrix of COVID-19 Classification 

 

The test sets are evaluated using several metrics, namely Total Accuracy, F1-score, 

Sensitivity, and Precision, as outlined in equations 1, 3, 4, and 5, respectively 

[8],[12],[22],[23],[28]. In these equations, TP corresponds to correctly predicting positively 

labeled images as COVID-19, and FP corresponds to cases where the model predicts COVID-

19 when the image is labeled as Normal, Pneumonia, or Opacity. TN signifies the correct 

prediction of negative images labeled as Normal, Pneumonia, or Opacity. FN, on the other 

hand, is the scenario where the model wrongly predicts a positive label (COVID-19) as a non-

COVID image. The confusion matrix is employed to assess the performance of Neural 

Networks classification approaches, considering both segmented and non-segmented 

scenarios.  
 

4. Results 
This section describes the performance comparisons of the lung segmentation models, 

then it will discuss the classification networks’ performance on the segmented and non-

segmented X-ray images.  

 

4.1. Segmentation results 
 

To compare the three neural networks during training, we plot the loss and accuracy curves 

for each model, the results are shown in Fig. 6. and Table 7. Fig. 7. shows a sample of the 

resulting segmentation for the three models.  

 

4.2. Classification results  

 
This section presents the experimental results evaluating the performance of the two 

classification methods, both with and without segmentation. 

 

4.2.1. COVID-19 classification without segmentation  

 

The confusion matrices for the classification without segmentation are illustrated in Fig. 8. 

Metrics are shown in Table 8. 
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Fig. 6: Training and validation accuracies and losses for LinkNet, U-Net, and FCN8 neural networks 

 

Table 7. Comparison results of the segmentation 

Network Acc 

% 

Jaccard 

(IoU)% 

Dice 

Coef 

(F1) % 

Mean 

IoU % 

Recall 

% 

Pre 

% 

Training 

time (H) 

Testi

ng time 

(sec) 

FCN8 96.75 87.72 93.38 91.72 94.57 92.51 5:30:46.59 2.78 

U-Net 97.68 90.96 95.10 93.96 96.27 94.32 6:06:29.74 6.58 

LinkNet 98.13 92.64 96.09 96.49 95.92 95.09 5:39:25.18 5.10 
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Fig. 7: X-ray image, then the ground truth of the image, and then the predicted result of FCN8, U-Net, and 

LinkNet respectively 

 

4.2.2. COVID-19 classification using segmentation 

 

Segmentation could play an important role in medical image classification since it captures 

the desired part of the image (region of interest). Consequently, the CNN model could learn 

from this part of the image [6]. In this part of the experiment, we will use the LinkNet 

segmentation model to segment the lungs of the COVQU dataset. To the best of our 

knowledge, this is the first study that utilizes LinkNet to classify lung diseases using a 

segmentation approach.  Fig. 9. Shows samples of the resulting segmentations of the COVQU 

dataset using LinkNet. 

For the classification tests of the segmented images, a preprocessing step was conducted 

utilizing our proposed pipeline. Subsequently, the segmented images were divided into 

training, validation, and testing datasets. Data augmentation was applied exclusively to the 

training set, followed by classification using pretrained models. (Xception, VGG16, 

ResNet50V2, MobileNetV2, and DenseNet201). 
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Fig. 10. Presents the confusion matrices generated from the classification of four classes 

using pretrained neural networks applied to the segmented X-ray images processed by 
 

Table 8. The Total accuracy, F1 score, recall, and precision for the classification models on plain images 

Model Acc  F1 

Score  

Recall  Precision  Total Training 

Time (Hours) 

Total 

Testing 

Time (Sec) 

Xception 90.08 90.03 90.08 90.08 3:16:32.2 00:13.4 

VGG16 90.18 90.24 90.18 90.41 2:24:49.6 00:09.8 

ResNet50V2 88.2 88.18 88.2 88.18 2:00:48.4 00:07.9 

MobileNetV2 89.76 89.78 89.76 89.81 1:14:44.6 00:05.1 

DenseNet201 91.32 91.30 91.32 91.32 4:23:54.3 00:19.0 

Fig.8: The confusion matrices for the classification without segmentation 

 

LinkNet. Additionally, Table 9 summarizes the performance results of each pretrained 

model on the segmented X-ray images.  
 

5. Discussion  

 
The following discussion section aims to interpret the results of the previous experimental 

findings, situating them within the broader research landscape while identifying critical gaps 

in the field.  It also addresses the study’s limitations and proposes impactful directions for 

future research. 
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Fig. 9: LinkNet segmentation results for the COVQU dataset, where A: belongs to COVID-19 X-ray images, 

B: belongs to Lung opacity, C: belongs to Normal, and D: belongs to Pneumonia X-ray images. 

 

Table 9. The Total accuracy, F1 score, recall, and precision for the classification models using segmented 

COVQU dataset by LinkNet. 

Model Acc  F1 

Score  

Recall  Precision  Total Training 

Time (Hours) 

Total 

Testing Time 

(Sec) 

Xception 84.35 84.28 84.35 84.25 3:33:54.6 00:12.5 

VGG16 84.16 83.96 84.16 83.92 2:11:02.6 00:08.6 

ResNet50V2 83.26 83.22 83.26 83.22 1:58:34.5 00:07.1 

MobileNetV2 83.45 83.51 83.58 83.45 1:11:14.0 00:04.2 

DenseNet201 85.11 
 

84.78 
 

85.11 
 

84.94 
 

4:23:03.9 

 

00:17.4 
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Fig. 10. Confusion matrices for the segmented COVQU dataset using the LinkNet, classification by 

pretrained neural networks. 

 

5.1. Segmentation results Discussion 
It is evident that LinkNet, developed by Keras, delivered superior performance compared to 

the other networks in terms of accuracy, Jaccard index, Dice coefficient, Mean IoU, and 

Precision of 98.13, 92.64, 96.09, 96.49, 95.09 respectively. On the other hand, U-Net exhibited 

the highest sensitivity at 96.27%, while FCN8 showed the shortest training and testing time. 

Both LinkNet and U-Net have better results. They are converging in both the 

training/validation accuracy and loss curve, while FCN8 has converged in the loss only, but its 

accuracy is highly swinging. 

The children’s X-ray images were not well segmented, as the process of taking these images 

is not an easy task for radiologists, which may affect the quality and clarity of the image. 

A comparative studies have been conducted in the literature to determine the most robust 

segmentation model. Researchers in [14] compared FCN, U-Net, and DeepLabv3 for person 

segmentation using a top view dataset, the study revealed that FCN achieved an intersection 

over union (IoU) of 83%, mean IoU (mIoU) of 80%, and pixel accuracy of 91%, U-Net 

achieved an IoU of 84%, mIoU of 82%, and pixel accuracy of 92%. DeepLabv3 achieved an 

IoU of 86%, mIoU of 84%, and pixel accuracy of 93%, additionally, FCN was found to be 

faster than U-Net and DeepLabv3 in terms of computational performance for both CPU and 

GPU. A comparison study between UNet, SegNet, ENet, and ErfNet was made by [1] using a 

dataset containing 536 Laryngeal Endoscopic Images which contain 7 classes. Their results 

were UNet and ErfNet was the best with a mean IoU of 84.7 %. 

A comparison of different encoders as the backbone of U-Net in segmenting histopathology 

Images was made by [10],  the highest performance was to EfficientNet-B3 as a backbone, 

Jaccard Index Dice Coeff. Sensitivity and Specificity were 0.95%, 0.97%, 0.99%, and 0.99% 
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respectively. ENet was compared with Fully convolutional networks FCN8s, FCN16s, and 

FCN 32s [52], they implemented semantic segmentation to derive the contours of the tea rows 

and identify the obstacles in the field scene. The result of the experiments was that ENet 

outperformed other models with a mean IOU of 0.734 and an accuracy of 0.941. In our 

comparisons, we obtained the highest accuracy using the LinkNet model, so we adopted it in 

the segmentation process to segment the images of the COVQU dataset. 
 

5.2. Classification results Discussion 

 
This section includes the experimental discussion on the performance of the two methods of 

COVID-19 classification (with and without segmentation). 

 

5.2.1. COVID-19 classification without segmentation 

 

This research found that DenseNet201 has the highest scores of 91.32%, 91.3%, 91.32%, 

and 91.32% for Accuracy, F1-Score, Recall, and Precision, respectively. The fastest overall 

training time and testing time was for MobileNetV2.  

COVID-19 is a subset of Pneumonia diseases so X-ray images from both diseases may 

have similarities. This may lead to a decline in accuracy [12],[41]. Literature stipulates that the 

accuracy of four classes is less than the accuracy of two or three classes. Researchers [12] have 

got an accuracy of 0.85  to 4 classes with sensitivity, specificity, and AUC 98.994%,   92.190 

%, and 59.480 % respectively. The four classes contain four different cases but with fewer 

datasets than we have. Researchers in [53] have made their experiments on four different 

classes, which are COVID-19, normal, bacterial pneumonia, and viral pneumonia images. 

They got results of accuracy 94.79 %. While it was 99.81% for binary class, their dataset 

contains only 6884 X-ray images. 

In our research we have four different cases of the X-ray images; COVID-19, 

Pneumonia, Normal, and Lung Opacity using a dataset of 21,165 CXR images. The result 

achieved by DenseNet201 of F1-Score was the highest among the other research works. 
Any ML approach must minimize false-negative predictions, especially in the medical 

context since it may lead to diagnostic and treatment delays that can be dangerous to patient 

health and will lose confidence relating to medical services. It can also lead to legal 

consequences. The high number of false negatives for experiments in ML to detect COVID-

19 is due to the limited sample size and low image quality of the COVID-19 data sets used for 

the X-ray images [26]. The main reason behind the missing correct classification is the low 

quality and resolution of the X-ray images [41]. Good images must have good light focus on 

both the left and right lobes [39]. Many of these X-ray images were originally in DICOM 

format (Digital Imaging and Communications in Medicine) that had been converted to PNG 

or JPEG format and this could cause lower-quality images [17].  

 

5.2.2. COVID-19 classification using segmentation 

 

This research found that some X-ray images were not segmented properly. Some of them 

were almost black, and some were completely black. Table 10 displays the count of 

segmentation failures for each segmentation model; the LinkNet model has the lowest failures 
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among the other models. Instances of failures include cases where the resulting images turned 

completely black. Additionally, other failures were identified. For example, there were cases 

where only one lung side was captured in the segmentation result, or where the segmentation 

result consisted of tiny, isolated pieces. 

The segmentation of the COVQU dataset of Normal and Pneumonia X-ray images was better 

than the segmentation of COVID-19 and Lung-Opacity X-ray images. 
 

Table 10. Number of segmentation failures for each segmentation model to the COVQU dataset where the 

result was a completely black image. 

Lung disease Segmentation 

failures by FCN8 

Segmentation 

failures by LinkNet 

Segmentation 

failures by U-Net 

COVID-19 13 4 22 

Lung- Opacity 38 3 12 

Normal lung 5 2 3 

Pneumonia 2 2 2 

Summation 58 11 39 

 

The good-quality X-ray images that have well-balanced light in the COVQU dataset 

were segmented well, some of these good samples are shown in Fig. 11-A. On the other hand, 

we found some images in the COVQU dataset that were not segmented properly, we can 

summarize the reasons behind that to: 

1- Poor quality images and improper lighting resulted in black or semi-black segmented 

images, as shown in Fig. 11-B. 

2- Unbalanced light for the left or right lung or bad postures of the patient will cause 

segmentation for one lung side or arbitrary parts of the other side. A sample is shown in Fig. 

11-C. 

3- Bad shooting positions or images that were not taken properly will not be segmented 

accurately. A sample is shown in Fig. 11-D. 

4- Unclear and blurry images will not be segmented accurately. A sample is shown in 

Fig. 11-E. 

5- The existence of some medical equipment or other signs or lines in the image will 

cause errors in the predicted segmented image. A sample is shown in Fig. 11-F. 

6- Some children's X-ray images were not segmented properly, since children and 

adolescents need alerted imaging approaches. A sample is shown in Fig. 11-G. 

For the classification tests of the segmented images, a preprocessing step was conducted 

utilizing our proposed pipeline. Subsequently, the segmented images were divided into 

training, validation, and testing datasets. Data augmentation was applied exclusively to the 

training set, followed by classification using pretrained models. (Xception, VGG16, 

ResNet50V2, MobileNetV2, and DenseNet201). 

The higher accuracy, F1-Score, recall, and precision were obtained by DeneseNet201 of 

85.11, 84.78, 85.11, and 84.94 respectively. MobileNetV2 has the lowest training and testing 

time in all our experiments.  

Numerous researchers have indicated that classification conducted without segmentation 

yielded higher accuracy than approaches that incorporate segmentation [6],[14]. This 

discrepancy is believed to stem from suboptimal segmentation quality. As illustrated in Fig. 9. 

and 7, LinkNet occasionally failed to accurately predict the region of interest, resulting in 

diminished classification accuracy. 
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Our results without segmentation demonstrated superior performance, achieving an F1-score 

of 91.30, compared to 84.78 when employing LinkNet for segmentation and DenseNet201 as 

the classifier in both approaches. 

Deep learning models trained on non-medical image datasets struggle with low-

resolution X-rays, which hurt the accuracy. Collaborating with radiology experts will be 

crucial for enhancing and expanding the high-resolution dataset, enabling deeper insights and 

improving the performance of deep learning algorithms in the medical field. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: segmentation Failures for COVQU dataset, where A: Good quality X-ray images, B: Poor images, C: 

Unbalanced light, D: Bad shooting positions, E: Unclear and blurry images F: medical equipment or other signs, 

G: children X-ray images. 

 

6. Conclusions 

 
In this research work, different deep learning-based semantic segmentation models 

FCN8, U-Net, and LinkNet have been investigated for lung segmentation to find out the 

segmentation effect on multi-class classification for lung disease. U-Net architecture has been 

trained from scratch, while FCN8 has been trained from scratch using pretrained VGG16 as a 

backbone, LinkNet which is a pre-trained model provided by Keras was investigated in this 

comparison.  
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Results show that LinkNet by Keras outperformed the other segmentation networks in 

terms of accuracy, Jaccard, Dice, Mean IoU, and Precision of 98.13, 92.64, 96.09, 96.49, 95.09 

respectively, while U-Net has the higher sensitivity of 96.27. FCN8 has the lowest training and 

testing time.  

The research adopted the LinkNet to segment the COVQU 2nd update dataset which 

contains 21,165 CXR images then used five pretrained architectures (Xception, VGG16, 

ResNet50V2, MobileNetV2, and DenseNet201) to make a 4-class classification (COVID-19, 

Viral Pneumonia, Normal and lung Opacity). We found that the accuracy of non-segmented 

X-ray images outperforms the segmented. We have provided a detailed analysis to explain this 

result by studying the quality of images that were not segmented well. Therefore, we highly 

recommend that researchers select high-quality medical images whether for classification or 

segmentation experiments.  

The best classification results of non-segmented images were obtained by DenesNet201 

of accuracy, F1-Score, recall, and precision 91.32, 91.30, 91.32, 91.32. while MobilNetV2 has 

the lowest training and testing time for all our experiments in this research.  The best 

classification accuracy for segmented X-ray images was achieved using the LinkNet 

segmentation model and the DenseNet201 classifier, with accuracy, F1-Score, recall, and 

precision values of 85.11%, 84.78%, 85.11%, and 84.94%, correspondingly.   

Deep learning models leveraging transfer learning, which can achieve remarkable 

results, are typically trained on vast datasets of non-medical images. However, their 

performance encounters significant challenges, particularly when processing low-resolution or 

blurry X-ray images, which can severely affect accuracy. Consequently, it is crucial for 

radiology specialists to meticulously evaluate the datasets employed by researchers in artificial 

intelligence to ensure reliability and effectiveness. 
One of the primary limitations of this research is the low resolution of many images in 

the COVQU dataset. This issue poses significant challenges in achieving accurate 

segmentation of the lung region. In the future, we aim to address this limitation by acquiring a 

high-resolution dataset and leveraging hybrid deep-learning models for training. Additionally, 

we plan to implement a cross-validation approach to rigorously evaluate the performance and 

robustness of the future model. 
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