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Abstract 

The Internet of Things (IoT) is experiencing significant market growth 
thanks to advancements in electronic sensors, microprocessors, 
communication, and information media. With billions of devices 
interconnected , the potential for IoT applications is immense. This paper 
proposes an architecture for air quality monitoring systems based on IoT 
and Big Data technologies, providing tools, resources, and functionalities 
related to embedded systems, communication, processing, storage, data 
analysis, web, business, and security features. Furthermore, integrating 
IoT with Big Data enables the application of predictive models and machine 
learning algorithms to anticipate pollution fluctuations and proactively 
adjust ventilation systems. This predictive intelligence not only enhances 
occupant comfort and health by maintaining optimal indoor air quality but 
also improves energy efficiency by adjusting ventilation to meet actual 
needs.  

Keywords-- air quality, big data, energy efficiency, intelligent systems, 
Internet of Things (IoT), predictive models. 

1 Introduction 
The research significance of developing an indoor air quality monitoring system using 
the Internet of Things and big data technologies lies in the health preservation of indoor 
occupants. The high level of outdoor and indoor pollutants, the long duration with which 
people stay indoors, and the negative correlation between ventilation and air conditioning 
usage result in direct impacts on indoor occupants’ health and energy consumption. 
While other types of air pollution occur outside, indoor pollution has recently gained 
momentum because of the long urbanization process, densification of the population, 
increased amounts of building waste, unhealthy construction materials, established 
ventilation regulations, and famous exhaust systems that have been applied to buildings, 
contributing considerably to the deterioration of indoor air quality. Respiratory illnesses, 
including congestion, coughing, and dry skin, are caused by filthy air; this may be tied to 
the fact that humans spend 90% of their lives in indoor environments [1], [2]. 

To improve the quality of interior life, indoor air quality (IAQ) systems are devices or 
sets of devices designed to monitor, analyze and improve the air quality inside buildings. 
These systems are increasingly used in homes, offices, schools and other indoor 
environments to ensure healthy air and prevent health problems. To improve air quality 
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in indoor environments, several metrics are used, such as the CO2 concentration, 
measurement of fine airborne particles, detection of toxic gases such as CO or O3, 
measurement of temperature and humidity to monitor thermal comfort, and prevention 
of mold growth [3]. Therefore, real-time monitoring is needed to achieve timely detection 
and correction of pollution episodes to improve IAQ, and data analysis is essential for 
identifying the causes and their effective solutions. In contrast, the IoT allows devices to 
communicate and share data, whereby it has revolutionized domestic infrastructure, 
making our homes more energy-efficient, functional, and safe [4]. The information given 
by IoT devices, once processed by big data systems, enables the identification of trends 
and forecasts of changes in air quality and the automatic triggering of actions such as 
ventilation on/off or alerts. This, of course, requires special attention to data security and 
scalability to enable smooth integration and secure usage in different environments. 

The main question we are trying to answer in this paper is how IoT, artificial intelligence 
models and big data-based systems can be used for predicting fluctuations in indoor air 
quality while optimizing energy efficiency in smart buildings. Systems can then 
proactively readjust heating, ventilation, and air conditioning (HVAC) systems, reducing 
energy consumption while maintaining optimal conditions for occupant health. This 
approach not only improves the energy sustainability of intelligent buildings but also 
enables more reactive and autonomous management of air control systems, transforming 
the way buildings respond to internal environmental changes. 

We start our analysis with a literature review of QAI monitoring systems using IoT 
technologies and big data platforms. We explore the architectures proposed, the 
challenges faced and the solutions adopted to enable effective monitoring. This review 
also highlights systems and sensors employing air samples, as well as analytical tools for 
improving the indoor air quality. We then propose the predictive models that can be 
integrated into the system in each specific case  as well as the system hardware and 
software architecture. 

2 Literature review 
The article “Development of an IoT-Based Indoor Air Quality Monitoring Platform” [4] 
describes the development of Smart-Air, an IoT platform for real-time indoor air quality 
monitoring that uses sensors to measure various pollutants. Data are analyzed and 
visualized via an AWS-based cloud server, with alerts in the event of moderate or poor 
air quality. With respect to the integration of machine learning models, this article 
proposes the use of machine learning techniques to improve the accuracy of air quality 
forecasts. 

The article “Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring” [5] 
focuses on the development of an air quality management system designed for smart 
buildings that integrates multi sensor data to enhance indoor air quality (IAQ) 
monitoring. The authors propose an approach that merges the indoor air quality index 
(IAQI) with humidex to create an enhanced indoor air quality index (EIAQI). This system 
uses a network of waspmote sensors to measure various indoor air pollutants in real time. 
Real-time monitoring is utilized through the deployment of a network of waspmote 
sensors that continuously measure various indoor air pollutants and environmental 
parameters. The real-time data collected from the sensors are processed via an extended 
fractional-order Kalman filter (EFKF).  

The article "A comprehensive review on indoor air quality monitoring" [6] provides an 
extensive overview of the current state of indoor air quality (IAQ) monitoring systems. 
Several machine learning models are mentioned as potential tools for predicting future 
air quality conditions. Attention has focused mainly on long short-term memory (LSTM) 
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and gated recurrent unit (GRU) architectures, which are recurrent neural network (RNN) 
architectures that are notable for their ability to analyze patterns in historical air quality 
data and make reliable predictions about future conditions. 

The article "Building an indoor air quality monitoring system based on the architecture 
of the Internet of Things" [7] presents the development of a comprehensive indoor air 
quality monitoring system that utilizes IoT technology. This study incorporates fuzzy 
logic control mechanisms to manage the indoor environment on the basis of the collected 
data.  Unfortunately it does not delve into predictive analytics or forecast future air 
quality conditions. 

The article titled "An Improvement Strategy for Indoor Air Quality Monitoring Systems" 
[8] introduces two main decision-making algorithms that consider measurement 
uncertainty, allowing for more reliable assessments and interventions in indoor 
environments: the utility cost test algorithm, which evaluates decisions under conditions 
of uncertainty by considering the potential consequences of those decisions, referred to 
as utilities, and the fixed risk algorithm, which is designed to manage the risk associated 
with exceeding thresholds. 

The article "Establishment of Smart Living Environment Control System" [9] proposes 
several key technologies for the establishment of a smart living environment control 
system, such as the IoT, sensing components, cloud computing and mobile technologies. 
The article does not explicitly mention specific AI tools used for prediction within the 
smart living environment control system. However, it does refer to the integration of 
various advanced technologies, such as big data and cloud computing, which are often 
associated with AI applications. 

In Table 1, we present a comparison of several studies on air quality monitoring systems, 
analyzing various aspects, such as the metric used, energy efficiency, sampling rate, 
storage, compliance with standards and the predictive capability of the models.

Table 1 Comparison of studies on air quality monitoring systems on the basis of 

metrics, energy efficiency, sampling rate, storage, norms and prediction algorithms 

article Metrics used 
Energy 

Efficiency 
Sampling rate Storage 

Standards 
compliance 

Prediction 

[4] Carbon dioxide (CO2), 

Volatile organic 

compounds (VOCs), 

Aerosols, Temperature and 

humidity 

  Not 
specified 

Amazon 
Web 
Services 

Indoor Air 
Quality 
Control 
Act 
(Korea) 

Not invoked 

[5] Indoor Air Quality Index 

(IAQI), Humidex, Carbon 

monoxide (CO), Carbon 

dioxide (CO₂), Ammonia 

(NH₃), Hydrogen (H₂), 

Hydrogen sulfide (H₂S), 

Volatile organic 

compounds (VOCs) such 

as ethanol (C₂H₆O) and 

toluene (C₇H₈), Suspended 

particulates 

Not 
explicitly 

invoked 

Not 
specified 

Not 
specified 

 
 
 
 
 
 
 
 
 
 
 

Not 
specified 

fractional  
extended 
Kalman filter 
(FEKF), used to 
manage 
uncertainties, 
noise and 
missing 
measurements 
that can affect 
prediction 
performance 

[6] Particulate Matter (PM), 

Carbon Dioxide (CO2), 

  Not 
specified 

Web 
Servers  

Not 
specified 

Long Short-Term 
Memory (LSTM) 
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Volatile Organic 

Compounds (VOC), 

Temperature and Relative 

Humidity (RH), Air 

Quality Indices (AQI), 

Ozone (O3) 

and Gated 
Recurrent Unit 
(GRU). anticipate 
indoor pollution 
levels based on 
historical data. 

[7] Particulate Matter 

(PM2.5), Carbon Dioxide 

(CO2), Carbon Monoxide 

(CO), Air Quality Index 

(AQI) 

Not 
explicitly 

invoked 

30 seconds. Terminal 
computer 

ASHRAE1 vector Kalman 
filter, to predict 
pollutant 
concentrations in 
indoor air 

[8] Carbon dioxide (CO2), 

Total volatile organic 

compounds (TVOCs), 

Fine particulate matter 

(PM2.5) 

  Not 
specified 

Cloud Not 
specified 

Not specified 

[9] PM2.5 and PM10, 

Harmful gases, Air Quality 

Indices 

Not explicitly 
invoked 

Not 
specified 

Google 
Cloud 
Drive, 

ISO 7730 
et ISO 
10551 

Not invoked 

[10] Air Quality Indices (AQI), 

Carbon monoxide (CO), 

Methane, Liquefied 

Petroleum Gas (LPG), 

Smoke, Temperature and 

Humidity, Meteorological 

Data 

Not explicitly 
invoked 

Not 
specified 

ThingSpea
k 

Not 
specified 

Long-term 
memory neural 
network (LSTM) 
to account for 
temporal 
variations in 
pollution levels 

As shown in Table 1, intelligent indoor air quality systems still have diverse approaches 
and methodologies. While a few studies have matured enough to use methods such as AI 
and predictive models, others still focus only on pollutant measurement alone while 
neglecting other factors (e.g., energy efficiency and standard compliance). An analysis 
of the key points is as follows: 

 Metrics used: Most items measure air quality indices, including fine particulate 
matter (PM2.5 and PM10), carbon dioxide (CO2), carbon monoxide (CO), volatile 
organic compounds (VOCs), ozone (O3), and other indicators such as humidity and 
temperature. These measurements are essential for assessing indoor and outdoor air 
quality. Some articles include additional measurements, such as liquefied petroleum gas 
(LPG), methane, ammonia, and suspended particulates. This shows a variety of 
approaches for detecting pollution. 

 Energy efficiency: Few articles explicitly address energy efficiency. Only a few seem 
to take this into account, which could indicate a lack of emphasis on this aspect or that 
energy efficiency is an indirect priority in ventilation systems. 

 Sampling rate: The sampling rate was specified in only one article (30 s) and was not 
used in the other studies. However, the sampling rate is important, as it can influence 
system responsiveness and predictive accuracy. The absence of this information makes 
it difficult to assess the real-time performance of systems. 

 Data storage: Storage methods vary, with some studies using the cloud (Google 
Cloud Drive, ThingSpeak, Amazon Web Services), whereas others do not specify the 
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storage tool used. The use of the cloud suggests easy access to data and the ability to 
process large volumes, although this raises questions of security and latency. 

  Compliance with standards: A few articles mention compliance with air quality 
standards. As compliance is rarely explicit in the majority of articles, this shows an effort 
that must be made to comply with standards. Compliance is essential to guarantee the 
reliability and conformity of systems in regulated environments. 

 Prediction: Predictive techniques vary, with some papers using Kalman filters to 
improve predictions by accounting for noise and uncertainties, whereas others use long-
memory neural networks (LSTMs) to process temporal data. Several articles do not 
include predictive capabilities. Machine learning techniques such as LSTM and gated 
recurrent unit (GRU) networks tend toward sophisticated predictions based on time series 
models. 

On the basis of these comparisons, in the following section, we propose an analysis of 
indoor air quality standards and a comparison of big data technologies in terms of real-
time data processing. We also focus on integrating IoT monitoring systems with machine 
learning and deep learning networks for reliable prediction decisions. 

3     Technical study of the various components of an intelligent 

indoor air quality monitoring system 

3.1   Indoor air quality standards 

Indoor air quality standards are essential for ensuring indoor air quality and energy 
efficiency. Here are some of the best-known standards, with a description and the main 
metrics they use: 

 ASHRAE 62.1 and 62.2 (United States) [11]: Published by the American Society of 
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), this standard is 
widely adopted for establishing ventilation and indoor air quality requirements. 
ASHRAE 62.1 applies to commercial and institutional buildings, whereas ASHRAE 62.2 
applies to residential dwellings. It imposes minimum air exchange rates to ensure good 
indoor air quality. 

 ISO 17772-1 (International) [12]: This international standard sets energy performance 
and indoor air quality criteria for ventilation systems in nonresidential buildings. It covers 
energy efficiency and thermal comfort while ensuring adequate levels of ventilation. 

 EN 13779 (Europe) [13]: European standard EN 13779 specifies ventilation and air-
conditioning requirements for nonresidential buildings. It includes indoor air 
performance criteria on the basis of pollution levels and contaminant sources. It is used 
to define air quality classes and thermal comfort in indoor spaces. 

 WELL Building Standard (International) [14]: Although not solely focused on 
ventilation, this standard for occupant health and well-being in buildings pays particular 
attention to the indoor air quality. This highlights best practices in ventilation and air 
filtration for commercial and residential buildings. 

 LEED (leadership in energy and environmental design): [15]: This is a sustainable 
building certification that includes indoor air quality criteria. Although not specifically a 
ventilation standard, it imposes requirements for ventilation systems to reduce pollutants 
and maximize energy efficiency. 

 BREEAM (Building Research Establishment Environmental Assessment Method) 
[16]: This is another environmental certification system for buildings. Specific 
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ventilation performance is needed to optimize air quality and occupant comfort while 
minimizing the carbon footprint. 

 WHO (World Health Organization) [17]: Although the WHO does not provide 
specific standards for indoor air, it does provide global guidelines for air pollutants that 
can be applied indoors. 

The metrics used by these standards to ensure good air quality are as follows: 

 CO₂ (ppm): Indicator of ventilation quality; high levels may indicate poor ventilation. 

 PM2.5/PM10 (µg/m³): Fine particles of different sizes, with PM2.5 being more 
hazardous to health because of its ability to penetrate deep into the lungs. 

 VOCs (µg/m³): volatile organic compounds (VOCs) that can be harmful and can be 
produced from building materials, cleaning products, etc. 

 Formaldehyde (HCHO): Hazardous chemical often found in furniture and building 
materials; carcinogenic. 

 Ozone (O₃): Ozone can enter buildings from outside or be generated by internal 
appliances. 

 Carbon monoxide (CO): Toxic gas from combustion; high levels indicate a 
significant health risk. 

In Morocco, the indoor air quality standards used may vary according to specific project 

requirements and local regulations. However, ASHRAE standards 62.1 and 62.2, as well 

as ISO 17772-1, are often applied in construction and ventilation projects, even at the 

international level, as they are recognized worldwide and widely adopted in various 

countries, including Morocco, for certain quality projects. In Table 2, we present the 

values we used in the rest of our study. 

Table 2 The recommended level used for different metrics for the rest of our study 

Metric 
Recommended 

Threshold 
Explanation/Importance 

CO₂ (ppm) ≤ 1000 
Acceptable level to maintain proper air exchange and 
prevent drowsiness or discomfort. 

PM2.5 (µg/m³) ≤ 25 
Protects occupants from fine particles that can 
penetrate deep into the lungs. 

PM10 (µg/m³) ≤ 50 
Limits larger particles that can irritate the respiratory 
tract. 

VOCs (µg/m³) ≤ 300 
Reduces chemical pollutants emitted by furniture, 
paints, and cleaning products. 

Formaldehyde 
(HCHO, µg/m³) 

≤ 100 
Limits exposure to this carcinogenic pollutant 
commonly found in furniture and materials. 

Carbon Monoxide 
(CO, ppm) 

≤ 9 
Protects against this toxic gas from combustion 
appliances (heaters, kitchens). 

Temperature (°C) 20°C - 26°C 
Thermal comfort range for occupants, depending on 
the seasons in Morocco. 

Relative Humidity 
(%) 

30% - 60% 
Prevents issues of overly dry or humid air, reducing 
risks of mold or irritation. 

ACH (Air Changes 
per Hour) 

≥ 0.5 
Ensures sufficient air exchange to avoid pollutant 
buildup. 

Ozone (O₃, ppb) ≤ 51 
Reduces respiratory irritation caused by high ozone 
levels. 
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3.2 Real-Time Data Processing 

Big data technologies play a crucial role in intelligent ventilation systems, particularly 
when integrated with the Internet of Things (IoT). In such a system, IoT sensors 
continuously collect environmental data (such as temperature, humidity, and air quality) 
and transmit this information in real time. Owing to big data technologies, these massive 
volumes of data can be processed, analyzed and stored efficiently, enabling complex 
insights to be extracted and trends in air quality to be detected. 

In the literature, several tools are available for real-time data processing. In Table 3, we 
compare these tools on the basis of several key factors, such as latency, type of real-time 
processing, data persistence, ecosystem integration and supported languages. 

Table 3 Comparison of real-time data processing tools 

Tool Latency Streaming type Persistence 
Integrated 

ecosystem 

Supported 

langages 

Spark Streaming 
Medium (micro 

batch) 
Micro batch Yes Excellent (Spark) Java, Scala, Python 

Apache Flink Low True streaming Yes Moderate Java, Scala 

Apache Storm Low True streaming No Low Java, Python 

Kafka Streams Low 
True streaming 

(Kafka) 
Yes Excellent (Kafka) Java 

Google Dataflow Variable 
True 

streaming/batch 
Yes Excellent (Google) Java, Python 

Azure Stream 

Analytics 
Average 

True streaming 

(SQL) 
Limited Excellent (Azure) SQL 

Amazon Kinesis low True streaming No Excellent (AWS) Java, Python 

Depending on the complexity of our system and its needs in terms of latency, persistent 
state and integration, we may use either of the following solutions: 

 Apache Flink is perfectly suited for applications that demand real-time processing on 
the basis of a persistent state and have minimal latency. 

 Integration with Kafka: Kafka Streams is a great option if we already manage the flow 
of data with Kafka. 

 Spark ecosystem: Spark Streaming is good for batch analysis and machine learning 
applications. 

3.3 Prediction Models 
For an intelligent ventilation system, a predictive model can be designed to improve 

air quality and optimize energy efficiency by anticipating various factors and adjusting 

system parameters accordingly. To achieve these objectives, we propose below the key 

points that can be improved and the models best suited to each case. 

3.3.1 Air Quality Improvement 
 CO₂ concentration predictions: predict CO₂ levels on the basis of room occupancy. 
The model can anticipate a rise in CO₂ during high occupancy hours and adjust 
ventilation accordingly to maintain safe levels. 
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 PM2.5 and PM10 particle prediction: Environmental data are used to predict the 
infiltration of fine particles, especially in urban areas or during pollution episodes. The 
system could then trigger more intense air filtration cycles. 

 Concentration of volatile organic compounds (VOCs): Predicts the accumulation of 
pollutants from furniture, cleaning products or cooking, and adjusts ventilation to 
effectively disperse them. 

 Prediction of outdoor air quality: from meteorological data and outdoor pollution, the 
model could avoid using outdoor air during periods of high pollution and instead focus 
on indoor air recycling. 

3.3.2 Energy optimization 
 Predicted ventilation requirements based on occupancy: By learning occupant 
occupancy patterns, the model can anticipate times of high or low occupancy and adjust 
ventilation intensity to avoid overuse. 

 Temperature and humidity prediction: On the basis of weather forecasts and comfort 
preferences, the system can adjust ventilation to balance temperature and humidity, 
reducing the load on heating and cooling systems. 

 Optimum ventilation times: Predict when the outdoor air quality is best (e.g., early 
morning) and adjust the system to use outdoor air only during these times, reducing the 
need for filtration and air conditioning. 

 Energy load forecasting: Based on outdoor temperature forecasts and equipment usage 
patterns, the model can anticipate periods of high energy consumption and adapt 
ventilation to avoid peaks, thus improving overall energy efficiency. 

For each prediction use case in an intelligent ventilation system, several machine 

learning models may be particularly suitable, depending on the nature of the data, the 

complexity of the problem, and the frequency of the desired predictions. 

3.3.3 Suitable models for improving air quality 

 CO₂ concentration prediction: 

 Time series models such as ARIMA or SARIMA can be used if the CO₂ data 

follow a cyclical trend (such as regular room occupancy). 

 LSTM (long short-term memory) or gated recurrent units (GRUs), which are 

recurrent neural networks (RNNs) adapted to time series, can handle more complex 

temporal dependencies, especially when historical CO₂ data show irregular variations. 

 PM2.5 and PM10 particle forecasting 

 Random forest regressor or gradient boosting: To predict particle levels as a 

function of multiple variables (temperature, humidity, and outdoor air quality), these 

models handle tabular data and nonlinear interactions well. 

 LSTM: This method is used for long-term forecasting, especially if the PM2.5 

and PM10 levels follow temporal patterns influenced by factors such as seasonal 

pollution. 

 Prediction of VOCs and other chemical pollutants 

 XGBoost or random forest: These tree-based algorithms are powerful for 

forecasting chemical pollutants, taking into account the environmental characteristics 

and potential sources of pollution in buildings. 
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 Linear regression: For simple data or with few influential variables, linear 

regression may suffice, offering a lighter model. 

 Predicting outdoor air quality 

 SARIMA for cyclical weather data. 

 Facebook Prophet: Useful for forecasting daily and weekly time series with 

seasonal patterns, incorporating days of the week, holidays and seasonal effects. 

3.3.4 Suitable models for energy optimization 

 Ventilation requirements according to occupancy 

 K-nearest neighbors (KNNs) for detecting occupancy patterns based on similar 

periods in the past. 

 Classification by artificial neural networks (ANNs) if occupancy data are based 

on multiple sensors (such as motion detectors and CO₂ sensors). 

 Clustering models such as K-means are used to detect occupancy patterns and 

adjust operations accordingly. 

 Temperature and humidity prediction 

 SARIMA for seasonal and regular temperature forecasts. 

 Random forest regressors or gradient boosting machines (GBMs) manage 

nonlinear dependencies between meteorological variables and the indoor environment. 

 Optimum ventilation times 

 LSTM to predict periods of best outdoor air quality. 

 Tree-based time series models such as XGBoost and random forest are based on 

occupancy and weather forecasts. 

 Energy load forecasting 

 Multivariable linear regression or Ridge/LASSO regression is used if energy load 

data are influenced mainly by a combination of linear factors. 

 Deep learning with recurrent neural networks (LSTMs) for complex temporal 

dependencies in energy consumption and temperature data. 

In Table 4, we summarize the machine learning models suitable for each use case in 

an intelligent ventilation system.

Table 4 Machine learning models suitable for each use case in an intelligent indoor air 
quality monitoring system 

Use Case Objective 
Recommended Machine 

Learning Models 

Prediction of CO₂ 

concentration 

Anticipate variations to adjust 

ventilation 

ARIMA/SARIMA , LSTM, 

GRU 

Prediction of PM2.5 and 

PM10 particles 

Monitor and adjust air filtration Random Forest Regressor, 

Gradient Boosting, LSTM 

Prediction of VOCs and 

chemical pollutants 

Detect and reduce pollution sources XGBoost, Random Forest, 

Linear Regression 

Prediction of outdoor air 

quality 

Optimize ventilation based on 

outdoor conditions 

SARIMA, Prophet, LSTM 
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Ventilation needs based 

on occupancy 

Adjust ventilation according to 

occupancy 

KNN, Artificial Neural 

Networks (ANN), K-Means 

Prediction of 

temperature and 

humidity 

Maintain optimal thermal comfort SARIMA, Random Forest 

Regressor, Gradient Boosting 

Optimal hours for 

ventilation 

Determine the best times for 

ventilation 

LSTM, XGBoost,Random 

Forest 

Prediction of energy 

load 

Optimize energy consumption Multivariable Linear 

Regression, LSTM 

For temporal forecasting and continuous prediction (such as indoor air quality 
prediction), time series models and recurrent neural networks (RNNs) are particularly 
well suited. On the other hand, for energy and occupancy optimization tasks, 
classification and regression models (such as random forest or gradient boosting) are 
often more effective, especially when combined with an analysis of occupancy patterns 
and energy loads. Depending on resources and system complexity, hybrid models 
(combining several models) can also be used for the best results. 

4       The proposed architecture for an indoor air quality 

monitoring system based on IA, IOT and big data 

technologies 
As shown in Figure 1, the architecture of the proposed system consists of 5 main layers: 
the data collection layer, transmission layer, analysis and decision-making layer, storage 
layer and presentation layer. 

 Sensors and Actuator Layers (Data Collection): This layer contains physical devices, 
IoT sensors that measure environmental parameters (temperature, humidity, CO2, etc.) 
and actuators. In addition to internal sensors, our system uses external sensors to collect 
environmental data. To ensure smooth interaction, we use the MQTT communication 
protocol to orchestrate communication between the various components of an IoT 
system, including a Raspberry Pi, ESP modules and sensors/actuators. In this context, 
the Raspberry Pi generally acts as an MQTT broker, centralizing exchanges. Sensors 
connected to ESPs periodically publish data such as temperature, humidity, or CO₂ levels 
on specific topics. Actuators, such as fans or air conditioners, subscribe to these topics 
and react according to the messages received. The ESP uses Wi-Fi communication to 
connect to the Raspberry Pi and transmit or receive messages. Transmission and Flow 
Management Layer (Kafka): This layer collects, distributes and manages data in real time 
via Kafka. It receives data flows from the sensors and distributes them to the other layers 
for processing. In effect, sensor data are published in Kafka topics in real time via MQTT. 
Kafka distributes messages to consumers, i.e., the other layers for processing and 
decision-making. Kafka connectors are used to archive processed data or important 
events. These historical data are retrieved for retrospective analysis or to improve 
optimization models. 

 Analysis and Decision-Making Layer (Data Processing and Machine Learning): This 
layer analyzes data in real time, applying machine learning algorithms to predict trends 
and make decisions on the activation of IoT devices (fans, air conditioners, etc.). Kafka 
Streams is used for real-time stream processing, whereas machine learning models are 
used for prediction. To this end, a Kafka topic has been configured to receive continuous 
predictions, which are then used by the optimization algorithms to adjust the ventilation 
and air conditioning systems. The decision-making system takes data provided by 
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internal and external sensors into account when alternating between air-conditioning and 
ventilation. 

 Storage layer: This layer is responsible for storing, processing and managing data 
from IoT sensors and ventilation devices. It stores historical data for retrospective 
analysis, reporting and long-term performance management. This layer also retrieves 
data for training machine learning models. 

Presentation layer: This layer is responsible for interaction with the end user. A 
dashboard provides a real-time view of air quality, temperature and other environmental 
parameters. The web or mobile application allows the user to activate and deactivate 
ventilation and adjust parameters. An alert system provides notification of the air quality 
status and recommended actions.

.

Figure 1 Architecture proposed for the intelligent indoor air quality monitoring 

system 

This modular architecture enables greater scalability and flexibility for future additions, 
such as integrating other IoT devices or enhancing the prediction model. 
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5      Realization 
Our test environment is a studio-style dome equipped with connected objects (IoT) and 
artificial intelligence (AI) at the heart of the UNIVERSIAPOLIS campus (Figure 2). 

The project combines real-time monitoring and control of connected objects through a 
platform, as well as prototypes designed at the dawn of modern technology and machine 
learning for the optimization and automation of daily domestic life. This dome is 
composed of a bedroom, a dining room, a living room, a hall and a kitchen. We equipped 
all the rooms with temperature, humidity and CO2 sensors. Figure 3 shows the locations 
of the temperature and CO2 sensors in the smart home. 

As our system alternates between ventilation and air conditioning, we equipped our smart 
home with an air conditioner, as shown in Figure 4. 

5.1 choice of components 

The choice of components is crucial to ensure that the system operates smoothly. The 

sensors and actuators selected were chosen for their accuracy and reliability. The table 

below shows the components used in the project, together with their main characteristics 

and their functions in the system. 

Figure 2 Test environment 

Figure 3 Location of temperature and CO2 sensors in the smart home 

Figure 4 Air conditioner deployed in Smart Home 
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Table 5 List of electronic components used in our intelligent indoor air quality monitoring 

system 

COMPONENT TYPE CHARACTERISTICS FUNCTIONALITY IN THE SYSTEM 

Raspberry 

Pi 3B+ 

Single-board 

computer 

64-bit quad-core, 1 

GB of LPDDR2 

SDRAM, MicroSD 

card 

Central controller of the data collected 

from sensors 

Arduino 

Mega 

Microcontroller Microcontroller Managing sensors and actuators 

5 x MQ135 Air quality sensor Measures harmful 

gases (CO2, NH3, etc.) 

Monitoring air quality in each room and 

outdoors 

MQ2 Gas sensor Detects gases (VOCs, 

smoke) 

Identifying dangerous gas levels in the 

kitchen 

5 x DHT22 Temperature and 

humidity sensor 

Temperature range: -

40 to 80°C; humidity: 0 

to 100% 

Monitoring temperature and humidity in 

each room 

ACS712 Current sensor Range: 5A, 20A, or 

30A 

Measuring system energy consumption 

4 x Fans Actuators 12 V DC Ensuring air circulation in the rooms 

IR Module Actuator Infrared remote 

control 

Remotely controlling air conditioning 

ESP32 Microcontroller Built-in Wi-Fi, 

Bluetooth 

Transmit collected data or receive orders 

HLK-

PM01 

Power supply 

module 

AC-DC conversion Converts AC power to low voltage for 

microcontrollers and other components 

Relays Switching devices - Remotely controlling equipment 

Our IoT system uses an Arduino board to manage the sensors and actuators. Temperature, 

humidity and gas (such as butane) sensors are connected to the Arduino to collect 

environmental data. Actuators include fans connected to a relay module. The air 

conditioner is controlled via infrared with a Smart Air Conditioner control system 

deployed in the smart Home shown in figure 5. 

 

Figure 5 Control board deployed for air conditioner remote control 

 



 

Mouhim Sanaa                                                                                                     330 

 As mentioned above, we use the Kafka broker to ensure a continuous, reactive data flow 

and Kafka streams for real-time data processing. For the Kafka broker, we create 4 topics 

used to organize messages received from the various sensors and another topic to record 

data from the predictive system (Figure 6).  

These data are used by the decision-support system to switch between ventilation and air 

conditioning to ensure optimum energy efficiency and occupant comfort. In Table 6, we 

propose detailed scenarios for choosing between ventilation and air-conditioning. 

Table 6 Detailed scenarios proposed for choosing between ventilation and air-

conditioning 

Scenario Internal Conditions External Conditions System Action Justification 

Moderate 
temperature and 
air quality 
(ventilation) 

 Temperature: 20–

26°C 

 CO₂: good 

 PM2.5: good 

 Temperature: 20–

26°C 

 CO₂: good 

 PM2.5: good 

Ventilation activated Ideal conditions for 

renewing indoor air 

with external air. 

High internal 
and external 
temperature (air 
conditioning) 

 Temperature: >28 

 CO₂ <1000 ppm 

 PM2.5: < 12 µg/m³ 

 Temperature: >30 

 CO₂< 700 ppm 

 PM2.5 < 12 µg/m³ 

Air conditioning 

activated 

Ventilation is 

ineffective due to 

external heat; air 

conditioning is 

needed. 

Good 
temperature, 
poor internal air 
quality 
(ventilation) 

 Temperature: 20–

26°C 

 CO₂: 1000–2000 

ppm 

 PM2.5: 12–35 

µg/m³ 

 Temperature: 20–

26°C 

 CO₂ <1000 

 PM2.5 < 12 µg/m³ 

Ventilation activated Ventilation to 

reduce CO₂ levels 

and internal 

particles. 

Cold external 
and warm 
internal air 
(isolation) 

 Temperature: 20–

26°C 

 CO₂ <1000 ppm 

 PM2.5: 12–35 

µg/m³ 

  Temperature: <20 

  CO₂ <1000 ppm 

  PM2.5: 12–35 µg/m³ 

No action (isolation) Maintain indoor 

conditions without 

ventilation or air 

conditioning. 

Poor external 
air quality (air 
conditioning 
with filtration) 

 Temperature: 

>28°C 

 CO₂<1000 ppm 

 PM2.5 >14 µg/m³ 

 Temperature: 25°C 

 CO₂ >1500 ppm 

 PM2.5>40 µg/m³ 

Air conditioning 

activated with 

advanced filtration 

Avoid introducing 

polluted air while 

maintaining a 

comfortable 

temperature. 

High indoor 
humidity, 

 Temperature: 22°C 

 Humidity: 80% 

 Temperature: 20°C 

- Humidity: 60% 

Ventilation activated 

with humidity control 

Reduce excessive 

indoor humidity 

Temperature_topic Humidity_topic 

Co2_topic external_air_quality_topic 

prediction_topic butane_topic 

Figure 6 Kafka Topics 
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moderate 
external 
conditions 

using moderate 

external air. 

Heatwave 
outside, good 
indoor air 
quality 

 Temperature: > 

28C 

 CO₂: <1000 ppm 

 PM2.5: 12–35 

µg/m³ 

 - Temperature: 40°C 

- CO₂<1000 ppm 

- PM2.5: 12–35 

µg/m³ 

Eco-mode air 

conditioning 

High external 

temperature 

requires minimal 

air conditioning to 

maintain comfort. 

Sandstorm 
outside (closed 
system, 
filtration) 

 Temperature: 20-

26°C 

 CO₂<1000 ppm 

 PM2.5: 12–35 

µg/m³ 

 - Temperature: 30°C 

- CO₂:> 2000 ppm 

- PM2.5: >100 µg/m³ 

Air conditioning 

activated with 

advanced filtration 

Prevent polluted air 

from entering while 

maintaining 

acceptable indoor 

air quality. 

5.2 System programming logic 

System programming is based on well-defined logic, which enables sensors and actuators 
to be managed according to the data collected. The key steps we used in the programming 
logic of our indoor air quality system are as follows: 

 Initialization: The main role of the initialization stage is to prepare the system 

to collect, process and react to data in real time. This step configures the foundations 

for the entire treatment process, defining data sources, communication channels and 

tools for processing information. Kafka Streams is initialized with 

KafkaStreams.start(), which prepares the system to consume real-time data streams 

from sensors and external sources and to create real-time processing pipelines to 

make decisions on the basis of the latest data. 

Initialize Kafka topics for sensor data 

temperature_topic = "temperature_topic"    //Topic for indoor temperature data 

humidity_topic = "humidity_topic"           //Topic for indoor humidity data 

co2_topic = "co2_topic"                     //Topic for CO2 levels 

external_air_quality_topic = "external_air_quality_topic"//Topic for external air quality 

data 

prediction_topic = "prediction_topic"       //Topic for predictions 

butane_sensor_topic = "butane_sensor_topic" //Topic for butane gas detection data 

//Start the Kafka Streams for real-time data processing 

stream = KafkaStreams.start() 

 

 Collect and Aggregate Sensor Data: This stage begins by collecting data 

from various sensors deployed in the environment (e.g., temperature, humidity, CO2, 

air quality, butane gas sensors). Once the data have been collected, the aggregation 

stage involves combining several data streams from different sources. They are then 

filtered, reduced and transformed to make them usable by the control system. 

 Consume streams of data from various sensors 

temperature_stream = stream.consume(temperature_topic)       //Temperature data 

humidity_stream = stream.consume(humidity_topic)            //Humidity data 

co2_stream = stream.consume(co2_topic)                      //CO2 data 
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external_air_quality_stream = stream.consume(external_air_quality_topic)//External air 

quality data 

butane_stream = stream.consume(butane_sensor_topic)         //Butane sensor data 

 

//Aggregate all sensor data into a unified stream 

sensor_data_stream = stream.join( 

    temperature_stream, humidity_stream, co2_stream, external_air_quality_stream 

) 

//Applying prediction logic to the aggregated data 

predicted_data_stream = sensor_data_stream.map(data => { 

 //Call a prediction function or model to predict air quality and temperature 

    prediction = PredictAirQualityAndTemperature(data) 

    return data.merge(prediction)//Combine input data with prediction 

}) 

//Send prediction results to the prediction topic 

predict_data_stream.foreach(prediction => { 

    stream.produce(prediction_topic, prediction)//Publish predictions for further processing 

})

 Safety Check for Butane Detection: The butane sensor stream is 

continuously monitored. If butane gas is detected, the system immediately activates 

an alarm and shuts down all ventilation and air conditioning systems for safety. If no 

butane is detected, the system follows its normal logic. 

 Monitor the butane sensor stream for safety alerts 

butane_alert_stream = stream.consume(butane_sensor_topic) 

//Check for butane gas detection in real time 

butane_alert_stream.foreach(alert => { 

    if (alert.butane_detected == true) { 

//Trigger safety protocol if butane is detected 

        ActivateAlarm()                        //Sound the alarm 

        DeactivateAllSystems()                //Turn off all ventilation and air conditioning 

systems 

    } else { 

     //If no butane is detected, proceed with normal system operation 

        ProcessPredictions() 

    } 

}) 

 Decision Making Based on Predictions: Predictions from the 

prediction_topic are processed to make real-time decisions. On the basis of air 

quality and temperature predictions, the system can activate or deactivate ventilation 

or air conditioning. The system handles eight scenarios, as described in the decision-

making table (Table 6). 

    Make decisions on the basis of predictions 

function ProcessPredictions() { 

//Consume prediction data from the prediction topic 

    predictions_stream = stream.consume(prediction_topic) 

 

//Make decisions on the basis of predictions 

    predictions_stream.foreach(data => { 
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        if (data.air_quality == "good" AND data.temperature == "normal") { 

         //Scenario 1: Optimal air quality and temperature 

            SetMode("standby")                 //No action needed 

        } 

        else if (data.air_quality == "poor" AND data.temperature == "normal") { 

         //Scenario 2: Poor air quality 

            Activate ventilation()              //Purify indoor air 

        } 

        else if (data.temperature == "high") { 

            if (data.air_quality == "good") { 

             //Scenario 3: High temperature, good air quality 

                ActivateCooling()              //Turn on air conditioning 

            } else { 

             //Scenario 4: High temperature, poor air quality 

                Activate cooling and ventilation()//Cool and purify the air 

            } 

        } 

        else if (data.air_quality == "average" AND data.temperature == "normal") { 

         //Scenario 5: Average air quality 

            MaintainVentilation("open")        //Keep ventilation running 

        } 

        else if (data.temperature == "low") { 

         //Scenario 6: Low temperature 

            DeactivateCooling()                //Turn off air conditioning 

            ActivateVentilationIfNecessary()   //Ventilate if required 

        } 

        else if (data.air_quality == "poor" AND data.temperature == "normal") { 

         //Scenario 7: Poor air quality 

            MaintainVentilation("closed")      //Prevent external pollution 

        } 

    }) 

} 

 Action handlers: Each function handles a specific action for the system (e.g., 

turning on/off ventilation or air conditioning). The alarm function and system 

deactivation are critical for safety in the case of butane detection. 

Function Handlers 

function ActivateAlarm() { 

    SendCommand("alarm", "ON")              //Send a command to turn on the alarm 

    LogEvent("Butane detected! Alarm activated.") 

} 

function DeactivateAllSystems() { 

    SendCommand("ventilation", "OFF")       //Turn off ventilation 

    SendCommand("air_conditioning", "OFF")  //Turn off air conditioning 

    LogEvent("All systems deactivated for safety.") 

} 

function SetMode(mode) { 

    if (mode == "standby") { 

        SendCommand("ventilation", "OFF")   //Put system in standby 

        SendCommand("air_conditioning", "OFF") 

    } 

} 

function ActivateVentilation() { 
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    SendCommand("ventilation", "ON")        //Start ventilation 

} 

function ActivateCooling() { 

    SendCommand("air_conditioning", "ON")   //Start air conditioning 

} 

function ActivateCoolingAndVentilation() { 

    SendCommand("air_conditioning", "ON")   //Start both cooling and ventilation 

    SendCommand("ventilation", "ON") 

} 

function MaintainVentilation(state) { 

    if (state == "open") { 

        SendCommand("ventilation", "ON")    //Keep ventilation running 

    } else if (state == "closed") { 

        SendCommand("ventilation", "OFF")   //Stop ventilation 

    } 

} 

function ActivateVentilationIfNecessary() { 

    SendCommand("ventilation", "ON")        //Activate ventilation only if needed 

} 

function DeactivateCooling() { 

    SendCommand("air_conditioning", "OFF")  //Turn off air conditioning 

6        Discussion 
The indoor air quality system we propose in this study combines the most innovative 
technologies in terms of connected objects, data analysis and real-time processing. 
The strengths of the proposed solution, as well as its limitations for possible 
improvement, are analyzed below. 

Comfort and energy efficiency: To optimize energy consumption while maintaining 
adequate thermal comfort, we alternated between fan and air conditioning based on real-
time data (temperature and air quality). In addition, the use of forecasts (data-based 
predictions) allows us to adjust actions before conditions become uncomfortable. 

 Improved air quality: deployed sensors monitor indoor and outdoor air quality to 
activate ventilation or shut down systems, ensuring a healthy environment. The 
management of pollutants (such as CO2 or particles) prevents respiratory problems, 
especially in urban or industrial environments. 

 Increased safety owing to gas detection: The detection of gases such as butane 
activates an alarm and deactivates all other systems to prevent the risk of explosion or 
fire. This approach prioritizes occupant safety since the butane sensor takes priority over 
all other operations. 

 Connectivity and remote management: With ESP8266, the system can be monitored 
and controlled remotely via an application or cloud platform, offering great flexibility 
and continuous monitoring. 

 Scalability and customization: Using the Kafka and Kafka Streams, the system can 
easily handle large volumes of data and expand to include more sensors or actuators. 

The decision system considers both the data received from the various sensors and the 
predictions based on the data. With this in mind, we propose a set of scenarios with a 
focus on energy efficiency and occupant comfort. 

With regard to limitations for future improvement, we cite the following: 
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Dependence on connectivity: If the Wi-Fi network is unstable, or in the event of an 
ESP8266 failure, the system could be partially or completely disabled, compromising its 
reliability. 

System complexity: Coordination between multiple sensors, actuators and a real-time 
processing system such as Kafka makes the system complex to configure, maintain and 
troubleshoot. 

Sensor error risks: Incorrect calibration or malfunction of sensors (gas, temperature, 
humidity) could lead to incorrect actions, such as disabling a fan when butane gas is 
detected. 

Data and communication security: Data collected and commands must be encrypted 
and use sufficient security measures, as the system may be vulnerable to cyberattacks or 
malicious interception. 

Machine learning-based prediction: In our study, we proposed an in-depth analysis of 
the machine learning models that may be most appropriate in different scenarios. This 
first version of the system does not integrate the prediction part since the development of 
the best model requires real data collected from our test environment. The integration of 
prediction into our indoor air quality system is the subject of progress. 

7      Conclusion 
IoT technologies integrated with data processing algorithms in indoor air quality 
monitoring systems represent a significant leap toward the intelligent management of 
domestic and industrial environments. This article focuses on a system proposal that 
integrates a modular architecture based on sensors and actuators with a real-time data 
processing infrastructure using Kafka Streams. The ability to monitor and control critical 
parameters such as temperature, humidity, CO2, and external pollutants with this 
approach while ensuring predictive decision-making is readily possible. 

By emphasizing energy efficiency, the system optimizes the operation of fans and air 
conditioners to reduce energy consumption while sustaining a healthy, comfortable 
indoor environment. The use of recognized standards, such as MQTT for 
communication, ensures interoperability, reliability, and security for the data exchanged. 
In addition, the inclusion of a gas sensor for butane leak detection provides an essential 
layer of safety by automatically disabling those systems in the presence of possible 
danger. 

However, several limitations have been reported, such as dependence on stable network 
connectivity, risks from sensor errors, and difficult maintenance within complex 
environments. These constraints provide further opportunities for development: 
increasing sensor redundancy, local autonomy in the case of network failure, and the 
incorporation of machine learning algorithms to make more accurate predictions. 

Finally, the predictions that can be made by the system regarding air quality, weather 
conditions, or the lifetime of equipment seal its place not only as a reactive device but 
also as a proactive device. This further underlines the potential of such a system to meet 
the rising demands for sustainable and intelligent management of the indoor air quality. 
It therefore constitutes a very valuable contribution to the quest for health, safety, and 
energy efficiency across diverse environments. 
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