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Abstract 

This article evaluates the implications on transformer model performance in 
satellite image classification by means of numerous data augmentation techniques 
using the Eurosat dataset. We examine the Swin-tiny, Swin-small, Convit-small, and 
Crossvit-small models under several augmentation methods including MixUp, 
CutMix, Geometric, WGP-GAN, and DCGAN. Our findings demonstrate that 
Mixup and WGP-GAN augmentations significantly enhance model performance; 
Swin small achieves 99.26% test accuracy the best. CutMix was more helpful for 
Swin-small than for Swin-tiny; geometric augmentation improved Swin-tiny and 
Crossvit-small. DCGAN behaved differently on many models. These results 
highlight the significance of selecting appropriate augmentation techniques suited 
for certain model architectures to increase performance in assignments needing 
satellite image classification. 

 Keywords: Data Augmentation, Vision Transformers, classification, DGAN, 

CutMix, MixUp, Eurosat. 

1   Introduction 

Remote sensing scene classification has shown remarkable improvements with the 

application of Deep Learning (DL) techniques, as demonstrated by the works of [1] and [2]. 

However, in cases where there is an insufficient quantity of categorized data presented for 

training DL models, the performance of these models decreases significantly. When there 

isn't enough labeled data, DL models suffer from overfitting that is, they learn the training 

data extremely fine but fail to generalize to testing data that has never been seen before [3]. 

Nevertheless, the process of labeling huge amount of data needs large material and human 

resources. Therefore, alternative solutions are required. Several proposed strategies are 

designed to reduce the issue of overfitting resulting from a lack of labeled data. The first 

generation of solutions focuses on the network construction, including the implementation 

of dropout layer [4], Drop Connect [5],  L2-regularization [6] , and auxiliary classification 

branches[7]. Another solution involves training protocols, including well planned 
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initialization [8], an appropriate learning rate decay strategy [9], and a well-designed early 

stopping mechanism [10]. Data augmentation is another solution that can be used to address 

overfitting and enhance performance [11]. Data augmentation creates additional training 

samples by transforming the existing ones using geometric and color transformations. By 

providing the Deep Learning framework more examples to learn from, data augmentation 

expands the training set and thus minimizes the overfitting issue. Data augmentation never 

reduces the network's capacity, nor does it expand the computational complication and 

parameter fine-tuning. Instead, it serves as not explicit regularization technique, which has 

a greater importance in actual applications [12]. Data imbalance and data augmentation are 

closely related problems. One of the main approaches to solve unbalanced datasets is data 

augmentation [13] . Based on the most recent research[14],data augmentation techniques 

have been classified into two primary types: data-based data augmentation methods and 

network-based data augmentation methods. Data augmentation methods based on data are 

generally categorized into single-sample transformation, multi-sample synthesis, deep 

generative modeling, and virtual sample generating. Conversely, data augmentation 

techniques grounded on networks are mostly classified into controller network capacity 

approaches and learning strategies. Deep Generative Models, Multi-Sample Synthesis, and 

One-Sample Transform are the most often used data augmentation methods depending on 

data. The One-sample Transform is the most often utilized augmentation method. The 

single-sample transformation approach enhances the original data by means of geometry, 

color, sharpness, noise disruption, and random erasure applied on an input single sample 

dataset. New data produced by this procedure deviate from the original set. The processing 

of remote sensing picture data depends much on color. Commonly used in data augmentation, 

the single-sample transformation approach is simple and minimal time required [15]. 

Geometric transformations change visual shape when pixel values are mapped to new 

locations. New data come from image rotation, scaling, flipping, moving, cropping. Though 

its location and direction vary, often the class's fundamental form stays the same [16] [17]. 

The choice of data augmentation methods should be established on the specific attributes 

and domains of various image types. These methods should seek to maximize diversity while 

preserving the semantic information of the images. An example of this is that changing the 

orientation and reflecting of natural images can alter their semantic meaning. They are rarely 

employed for tasks using natural images. However, remote sensing images are particularly 

well-suited for this purpose. It is important to understand that variations in light conditions 

can significantly affect images captured in natural environments. Multi-Sample Synthesis is 

the second type of data augmentation. Multi-sample synthesis artificially mixes data from 

many images, unlike single-sample transformation. Multi-data synthesis is classified into 

two categories: feature space information synthesis and image space information synthesis. 

Image space information synthesis algorithms include between-class, Mixup, and sample 

pairing, whereas feature space algorithms include SMOTE. There are two main types of 

image spatial information synthesis methods: the multi-image nonlinear blending method 

and the linear stacking method of multiple images. Many algorithms are used for the linear 

stacking method of multiple images. These comprise the Mixup  [18] and CutMix [19] 

algorithms as well as the sample pairing and between-class techniques. The third strategy is 

based on Deep Generative Models. Single-sample transformation and multi-sample 

synthesis generally use a individual image or many images as input data for producing new 

images. With little prior knowledge, the freshly created picture only comprises the 

information from the original image. By use of information about the probability density of 

the original data, the depth generating model employs a data augmentation method wherein 

fresh samples are randomly generated. Theoretically ideal, the deep generative model 

technique combines the whole dataset as previous knowledge. Dealing with the maximum 
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likelihood problem—that is, the difference between the model distribution and the data 

distribution—the deep generative model achieves its aim. Deep generative models may be 

classified into three forms when one considers the usage of maximum likelihood function 

approaches: the estimation technique, the implicit method, and the deformation method[20]. 

The implicit method is a technique that ignores the need for maximizing likelihood and can 

be demonstrated by a generative adversarial network (GAN)[21].  It effectively models the 

variation between two probability distributions using the learning capacity of a neural 

network. It effectively avoids the challenge of solving the probability function and has 

become the most efficient and important generative model. The use of GANs is prevalent 

among these technologies [21]. Deep learning-based data augmentation is currently gaining 

a lot of attention among academics. A data augmentation method based on an image style 

transfer technique was proposed by Mikolajczyk et al. after they examined and compared 

several strategies for augmentation of data in image classification tasks and gave illustrative 

examples [17].The first type of data augmentation is widely utilized in remote sensing 

because it is already part of popular machine learning frameworks like TensorFlow or 

Pytorch [22]. In a previous study,[23]  utilized data augmentation techniques on remote 

sensing datasets, specifically employing horizontal flipping, vertical flipping, and 90° 

rotations. These transformations were employed because to their topology-preserving nature 

and minimal processing complexity. By using these simplest augmentation strategies, they 

successfully enhanced the Kappa index on the UC Merced dataset from 0.48 to 0.71, when 

assigning 50% for data training, 30% for data validation, and 20% for data testing.In the 

latest years, transformer models have proved significant capability in various computer 

vision operations, including classification of satellite image. Despite their success, the 

performance of these models can be further enhanced through effective data augmentation 

techniques. Data augmentation not only helps in mitigating overfitting but also improves the 

generalization capabilities of models.  

This article aims to evaluate the impact of various data augmentation methods on the 

performance of transformers (Swin-tiny, Swin-small, Convit-small, and Crossvit-small) 

using the Eurosat dataset. The remainder of this article is arranged as follows: Section 2 

discussion of the related works. In Section 3, “Materials and Methods,” the basic concepts 

and specific methods of augmentation techniques, transformer models and the model design 

are presented. Section 4 shows the investigational outcomes. Section 5 reviews the current 

research outcomes. Lastly, conclusions are illustrated in Section 6. 

 

2 Related Work 

[24] The research on Land Cover Image Classification explored the use of deep learning 

models (ResNet50, ResNeXt, AlexNet, MobileNetV3, and DenseNet), including 

transformers, to improve accuracy and efficiency in analyzing land cover images. By 

comparing CNNs and transformer-based methods, the study highlighted the superior 

performance of transformers, such as ViT and Swin Transformer, in reaching to good 

outcomes. The Eurosat dataset, comprising ten land cover classes from Sentinel-2 satellite 

images, was utilized for training and evaluation. Pre-trained weight models shown better 

accuracy than those learned from scratch according to validation accuracy curves. These 

results provide important progress in environmental analysis and urban planning as well as 

highlight the possibilities of transformer models in land cover categorization activities. 

[25]Combining transfer learning with the Swin Transformer model, the work presents a fresh 

approach for remote sensing image scene categorization. The model achieves great accuracy 

on six different remote sensing datasets by means of pre-training on ImageNet datasets and 
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migration learning. Results of validation demonstrate remarkable classification accuracy 

rates: 99.99% on UCM, 96.80% on AID, and 95.20% on NWPU. This method shows how 

well transformer models and transfer learning might be used to increase classification 

accuracy for remote sensing photos. For academics investigating transformer-based 

approaches in remote sensing applications, the work offers insightful analysis. [26]present a 

deep learning deep learning approach to raise satellite picture categorization accuracy. Large 

volumes of labeled data are a major obstacle in this field as obtaining such quantities may 

be costly and time-consuming. The scientists tackle issue by creating synthetic satellite 

pictures using Generative Adversarial Networks (GANs), therefore augmenting the current 

collection. Moreover, they extract images from Vision Transformers (ViTs), therefore 

improving the capacity of the classification algorithm to learn from the input. Comparatively 

to conventional techniques, their methodology shows improvement in categorization 

accuracy. Using traditional data augmentation techniques, the accuracy of the proposed 

approach is 76.7 percent; it is 98.7 percent now.  The work reported in [27] mostly addresses 

the use of GANs to generate synthetic satellite pictures to increase the generalizing ability 

of deep classification models. DCGAN and WGAN-GP produced the synthetic satellite 

photos. The study showed that both architectures had similar impacts on model performance; 

WGAN-GP did not show any appreciable advantage over DCGAN in the present situation. 

Applying geometric augmentations like random horizontal flip, vertical flip, and rotation 

boosted the model's performance yet further. Two deep classification systems used were 

Wide Resnet50 and VGG16.The paper showed that using geometric augmentation increased 

model accuracy on all kinds of testing. Moreover, the combination of geometric 

augmentation and GAN-generated pictures turned out to be rather helpful, particularly in 

cases where data was limited as it sufficiently reduced overfitting tendencies. [28]Three 

datasets—EuroSAT [29], NWPU-RESISC45, and AID [30]—were tested using the Swin 

Transformer model. The validation accuracy findings were quite exceptional with the Swin 

Transformer attaining 99.02% efficiency on the EuroSAT dataset, 95.38% efficiency on the 

NWPU-RESISC45 dataset, and 95.90% efficiency on the AID dataset. These results prove 

the greater execution of the Swin architecture compared to existing methods in classification 

of remote sensing image. The consistent high justification accuracies across different 

datasets further validate the robustness and effectiveness of the Swin Transformer for land 

cover classification tasks. [31] suggested a vision transformer based remote sensing scene 

categorization approach while using many data augmentation methods (Geometric 

augmentation) to improve the performance. They maintained a competitive accuracy despite 

compressing half of the vision transformer model's layers, hence pruning the model. utilizing 

many remote sensing datasets—such as Merced, AID, Optimal31, and NWPU datasets—

they demonstrated their effectiveness with the classification accuracies of their suggested 

technique utilizing the RGB pictures. In [32] the authors of the article suggest the use of a 

GAN named deeply supervised GAN to generate training samples for remote sensing photos 

covering Anhui Province in China. Applying this strategy to detect soil movement has 

demonstrated a 5% enhancement compared to the findings obtained without utilizing any 

data augmentation methodology. 

 

3   Materials and Methods 

3.1 The Eurosat Dataset 

It includes 13 different spectral bands and 27,000 annotated and geo-referenced sentinel-2 

images. In this study, the dataset will be used to train and evaluate classification models 
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since it contains a large and fairly distributed set of classes. Industrial buildings, residential 

buildings, rivers, lakes, pastures, forests, highways, and annual and permanent crops are 

among the ten categories that make up the dataset. The European Urban Atlas uses 64x64 

pixel images that cover cities at a spatial resolution of 10 meters per pixel. The dataset's 

authenticity and integrity are ensured by its direct acquisition from the primary source [29]. 

An example of the dataset is presented in Fig.1. 
 

 
Fig.1: Sample images of Eurosat dataset in RGB form. 

 

3.2 Data Augmentation Techniques 

One easy and more efficient way to upgrade the variety and scope of a training set is data 

augmentation. Working with small or unstructured datasets requires this method 

particularly as it is a necessary start in the preparation process [33]. Using many processing 

techniques, data augmentation generates new training examples from the initial dataset 

while preserving the quality of the initial class labels. By helping to avoid overfitting, these 

enhanced samples act to increase model robustness and generalizability [34]. Data 

augmentation techniques may be usually categorized into three categories depending on 

their underlying principles and procedures: 

 

3.2.1 One-Sample Transform  

Applying fundamental geometric augmentation techniques like scaling, rotating, translating, 

and flipping to current samples in order to create new ones is the most often used approach 

for improving datasets. These changes improve the capacity of the model to learn invariances 

and thus to generalize to fresh data. The authors in  [23] used flip, translate, and rotation 

augmentation methods to supplement dataset of remote sensing scenes to be used in change 

detection job. [35] also used picture zooming or scale augmentation method for satellite 

image collection to be employed in land cover and use changes categorization. For the 

purpose of categorization, horizontal and vertical flipping methods were used in [22] to 

enrich satellite photos; they thus contribute to provide great accuracy. This work will 

simulate real-world differences in picture orientation and perspective using Flipping and 

Rotation augmentation methods to generate various training examples. The rotation 

transformation randomly rotates the picture to produce a change in the orientation of the 

visual elements. Rotation ensures that the model may recognize objects in any direction. The 

flip transformation turns the picture along either the horizontal or vertical axis.  
 

3.2.2 Multi-Sample Synthesis 

 More advanced image-mixing algorithms, like Mixup [18] and CutMix [19], have been 

created in recent times to produce more instances for the model. Mixup is a method that 



 

103                       Benchmarking Vision Transformers for Satellite Image Classification … 

 

produces alternative examples of training by combining pairs of images and their associated 

labels using linear combinations. Particularly, the process includes combining two 

images and their corresponding labels by calculating a weighted sum. This results in the 

creation of a new image that is a combination of the two original images. This methodology 

enables the model to learn linear interactions among different classes, which enhances its 

robustness and capability for generalization. Studies have demonstrated that Mixup 

enhances performance on multiple image tasks related to classification. CutMix is an 

enhanced version of the Mixup technique that involves cutting out a section from one image 

and placing it onto another image. The labels from the original photos are combined and 

weighted based on the area of the patches to create the final image. CutMix improves the 

model's learning of data from various sections of the image, hence reducing the chance of 

overfitting to specific features. This method has been demonstrated to be highly successful 

in dealing with impeded objects in tasks involving object detection and scene classification. 
 

 

3.2.3 Deep Generative Models  

Generative modeling is an interesting approach for augmenting data as models such as 

GANs [36] learn the data dispersing to create fake samples that very nearly match the 

pictures collected from the original dataset. Comprising a pair of parallel-trained parallel 

neural networks (generator and discriminator). Generative Adversarial Networks (GANs) 

are built from While the discriminator tries to distinguish between real and synthetic 

pictures, the generator creates fake ones. By implementing an adversarial process, GANs 

have the capability to produce highly realistic images that enhance the training dataset. 

DCGAN[37] [38] is an example of a GAN that has been used for satellite images, WGAN-

GP[27] and, Cycle GAN[39]. In addition, satellite images have been processed using 

conditional GAN [40]. Two GAN models are considered: the Wasserstein GAN with 

Gradient Penalty (WGAN-GP) and the Deep Convolutional GAN (DCGAN). According to 

our research, DCGAN is not very flexible when it comes to generating images at different 

resolutions. Nevertheless, our research confirms the results of [38] that it performs 

excellently when 64x64 images are being generated. Also, DCGAN effectively captures the 

latent space. After considering the original dataset's 64x64 picture size and the requirement 

to evaluate performance by adding generated images to the training dataset, DCGAN was 

selected because of its popularity for effectively handling images of this resolution. We 

choose WGAN-GP largely to reduce potential instability during the training procedure and 

achieve earlier convergence. This was noticed in the reduced time of the training period.  
 

 

3.3 Selected Vision Transformers 

 

One goal of this research is to discover how different data augmentation methods influence 

the classification performance of certain vision transformers. The transformers selected for 

this research comprise Swin Transformer (tiny and small), Convit small, and Crossvit 

small. The choice of these transformers is based on their distinctive architectural 

characteristics and proven efficacy. We want to study the responses of every transformer 

variant to data augmentation and the manner in which these approaches influence the 

classification accuracy of the data by using many augmentation techniques. The 

performance of these models on the Eurosat dataset will help to evaluate the effectiveness 

of augmentation methods in enhancing model robustness and generalization in satellite 

image classification tasks. Known by many as the Shifted Window Transformer, the Swin 
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transformer [41] offers a hierarchical framework that transfers certain local windows across 

many levels and conducts self-attention inside particular local windows. The unique 

architecture of the Swin Transformer guarantees computational efficiency and helps it to 

effectively manage many picture resolutions. The changing process captures both local and 

global input, therefore ensuring that the model understands complex visual patterns. 

Designed to fit different computational budgets and performance criteria, two popular 

variants of this architecture are Swin-tiny and Swin-small. Over several benchmarks, the 

Swin Transformer has shown extraordinary effectiveness in tasks like image classification, 

semantic segmentation, and object identification, outperforming convolutional neural 

networks and other transformer models. Combining convolutional layers with vision 

transformers allows the Convit [42] (Convolutional Vision Transformer) to use both 

advantages. It combines the worldwide context modeling capability of transformers with the 

locality and translation equivariance properties of convolutions. Combining the benefits of 

both techniques, this hybrid approach increases the robustness and efficacy of the model. 

Convit is very effective for image categorization chores as its architecture maintains the 

spatial hierarchy of pictures. Including convolutional inductive biases into the model 

improves its capacity to learn stable and accurate representations, hence improving 

performance on many different types of datasets. One branch of the Crossvit (Cross-

Attention Vision Transformer) manages the input picture at a higher resolution using a 

smaller patch size, while the other branch manages it at a lower resolution using a larger 

patch size [43]. Crossvit's dual-path architecture lets it use its cross-attention techniques to 

gather coarse and fine characteristics. The cross-attention technique helps the model to 

merge data from both branches, hence enhancing its ability to detect objects and patterns at 

different sizes. For jobs requiring the extraction of features at many levels, including image 

categorization and object identification, Crossvit is very effective. The designs of certain 

transformer variants are reviewed in the Table 1.  

Table 1: Architecture of selected transformers. 

Variant Layers’ 

number 

Hidden Size Size of 

MLP 

Heads’ 

number 

Parameter 

Count 

Swin-tiny 12 96 384 3 28M 

Swin-small 24 96 384 3 50M 

ConViT-small 12 384 1536 12 85M 

CrossviT-small 12 384 (small),192 

(large) 

1536 

(each) 

6 (small), 3 

(large) 

44M 

 

3.4 Model Description 

The model design for this study, as shown in Fig.2, provides a thorough method for assessing 

how different data augmentation strategies affect the performance of particular visual 

transformers in a task of classifying land use\cover using the Eurosat dataset. The dataset is 

the first input data source used in the workflow. Various trials were conducted, both with and 

without data augmentation. Images created by geometric, Mixup, CutMix, WGAN-GP and 

DCGAN augmentation are utilized in this study. These augmentation methods are used to 

enlarge the training set thus as to avoid overfitting of the model.  
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Fig.2: The project's work plan. 

 

3.5 DCGAN and WGAN-GP Training  

  

Comprising 27,000 images from satellites arranged into 10 groups, each shown as a 64x64 

RGB image, the collection is All photos have a consistent size, and normalization is used to 

limit pixel values within the range (-1, 1), a technique recognized to improve GAN training. 

Inspired by the DCGAN paper [37] and the paper [27], we started convolutional layer 

weights with mean of  0 and standard deviation of 0.02. Using a mean of 1.0 and a standard 

deviation of 0.02, batchnorm layers were started from a normal distribution. With five 

blocks, the generator a deep convolutional network uses transposed convolution, batch 

norm, and activation layers in each block. In the final layer, a tanh activation is applied to 

accommodate the normalized image range. The generator creates a 64x64 RGB picture using 

a 100-dimensional noise vector as input. Designed as a deep convolutional network with 

five blocks, the discriminator binary classifies images—fake or genuine. Using Adam 

optimizer and a learning rate of 0.0002, both networks use binary cross-entropy as their loss 

function. We apply beta coefficients of 0.5 and 0. 999. Training consists of creating photos 

for every class independently, with 2000 to 3000 images for every class. The WGAN-GP 

was taught to produce 256 pictures for every class. [44] states that while this strategy may 

not always provide better pictures than the DCGAN method, it does have the benefit of 

improved training constancy. A generator construction that is similar to that employed in 

DCGAN was implemented. The learning rate and optimizer are kept constant to facilitate a 

comparison with DCGAN. Their results were compared using the code provided by 

reference [27]. The outcomes are shown in Fig.3 and Fig.4. GAN models are trained for 300 

epochs, generating 256 images per class (2560 in total), constituting approximately 10% of 

the original dataset. The renamed GAN-generated images were stored in a folder to be add 

to the dataset through training, facilitating a comprehensive set of experimentations. 

Notably, the imageries retrieved from the Kaggle link were formatted as jpg, whereas the 

generated images adopted the png format. During image generation, a classification-based 

folder arrangement was employed, categorizing images by class. For model training, the 

image label was derived from the filename, which inherently conveyed the respective class 

affiliation of the image. 
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Fig.3: Example Images Produced by DCGAN. 

 

Fig.4: Example Images Produced by WGAN-GP. 

 

3.6 Models Training 

We created unique code specifically for effective preparation and data loading. Image 

resizing and normalizing were part of the preparation tasks. The dataset was randomly 

divided into three parts: 70% for training, 20% for validation, and 10% for testing to ensure 

that each subset of the data remained mutually exclusive, meaning no overlap of samples 

occurred between training, validation, and testing sets. Particularly for deep learning 

problems, these ratios are generally agreed upon in machine learning research as they 

provide a strong mix between model training, hyperparameter adjustment, and performance 

evaluation. Later we trained the same models using transfer learning (Swin tiny, Swin small, 

Convit, and Crossvit transformer) using pre-trained weights. These weights originated from 

ImageNet previously trained models. After 25 training cycles, every model was kept with 

the best validation accuracy. We computed the categorical cross-entropy loss with a 5e-4 

learning rate Adam optimizer. The optimizer parameters, such as epsilon (1e-08) and betas 

set to (0.9, 0.999). The satellite images resized to 224x224 for Swin variants and Crossvit 

transformers, while images resized to 240 x 240 for Convit transformer. The images were 

normalized using standard deviations of [0.229, 0.224, 0.225] and mean values of [0.485, 

0.456, 0.406].  In the training of transformer models on the Eurosat dataset, geometric 

augmentation techniques included Random Rotation within a specified degree range set to 

a maximum of 20 degrees, Random Horizontal Flip with a probability of 0.5, and Random 

Vertical Flip with a probability of 0.5. These augmentations were used to create diverse 

training samples by simulating real-world variations in image orientation and perspective. 

Mixup augmentation involves blending two images and their corresponding labels using a 

mixing parameter, lambda (λ), which is sampled from a Beta distribution with parameter 
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alpha. For this implementation, alpha was set to 0.1, encouraging the creation of blended 

images that are close to the original samples but still introduce variability. CutMix 

augmentation involves replacing a randomly selected part of an image with a part from 

another image in the training batch and adjusting the corresponding labels proportionally. 
This technique effectively combines aspects of both Cutout and Mixup augmentations by 

providing localized mixing of image patches and labels, which can enhance the model's 

robustness and generalization. CutMix augmentation was implemented with a Beta 

distribution parameter alpha set to 1.0. 
 

4 Evaluation and Experimental Results 

Using a test set—excluded from the training phase—we evaluated every model. We generate 

the top-1 accuracy as assessment criterion as well as the precision/recall curves. Our 

experiments made use of Pytorch: A Colab pro+ system using an NVIDIA V100 GPU. In 

this section, we present and compare the validation accuracy of various vision transformer 

variants, specifically Swin (tiny and small), ConVit-small, and CrossVit-small. The models 

were evaluated on a baseline dataset without augmentation and on augmented datasets using 

various data augmentation techniques, namely Mixup, CutMix, Geometric augmentation, 

DCGAN, and WGP-GAN. The results are illustrated in Fig.5. 

Baseline validation accuracy of the Swin-tiny transformer was 98.96%. Various techniques 

of data augmentation changed the performance. DCGAN augmentation raised validation 

accuracy of 99% to show the greatest increase over baseline. With 98.93% for Mixup and 

CutMix respectively, both Mixup and CutMix augmentations generated validation accuracy 

very close to the baseline accuracy. On the other hand, geometric augmentation resulted in 

a somewhat lower accuracy of 98.44%. Equivalent to the baseline accuracy was 98.96% 

WGP-GAN augmentation. For the Swin-small transformer, the baseline validation accuracy 

was at 99.04%. Mixup augmentation shown a significant increase in a validation accuracy 

of 99.26%. DCGAN enhancement also did really well with an accuracy of 99.15%. CutMix 

augmentation generated a much lower accuracy of 98.81%; geometric augmentation 

matched the baseline accuracy of 99%. WGP-GAN augmentation was quite below the 

baseline with a 98.93% accuracy. Baseline validation accuracy for the Convit small arrived 

at 98.82%. WGP-GAN augmentation among the many augmentation techniques produced 

the greatest improvement with an accuracy of 99.07%. CutMix augmentation also showed a 

noteworthy increase with a 99.04% accuracy. Mix-up and DCGAN augmentations generated 

accuracy of 98.81% and 98.85%, respectively; both are quite below the baseline. Geometric 

augmentation reached considerably less than the baseline with an accuracy of 98.78%. From 

baseline validation accuracy of 98.82%, the Crossvit-small WGP-GAN augmentation 

generated the greatest improvement with an accuracy of 99.07%. DCGAN enhancement 

amply enhanced over the baseline with a 99% accuracy. Mixup and CutMix augmentations 

generated accuracy of 98.74% and 98.78%, respectively, both somewhat below the baseline. 

By use of geometric augmentation, an accuracy of 98.89% was achieved—rather above the 

baseline. Vision Transformers's performance on classification problems appears to be much 

improved with data augmentation. Advanced augmentation techniques as DCGAN and 

WGP-GAN often exhibited the highest gains in validation accuracy across several models 

because they provide diverse and meaningful training data. Mixup and CutMix 

augmentations also showed increases even though less consistent in surpassing the baseline 

performance. Different results came from geometric augmentation; some models performed 

considerably underperformance while others profited. These findings draw attention to 
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generally the viability of advanced data augmentation techniques in raising the accuracy of 

Vision Transformers.  

  
  

(a) Validation accuracy of Swin-tiny. 
 

 
(b) Validation accuracy of Swin-small. 

 

  
(c) Validation accuracy of Convit-small. 

 
(d) Validation accuracy of Crossvit-small 

 

Fig.5: The comparison results of using different data augmentation techniques on baseline 

Transformers. 

 

5 Discussion 

The evaluation of various augmentation methods on different transformer architectures 

(Swin-tiny, Swin-small, Convit-small, and Crossvit-small) using the Eurosat dataset 

provides valuable insights into their performance in terms of AUC, F1-score, and test 

accuracy. Below, we discuss the results as presented in Tables 2, 3, 4, and 5. 

For the baseline (no augmentation), the Swin-tiny transformer achieved an AUC of 0.9997, 

with an F1-score of 0.9867 and a test accuracy of 98.67% (Table 2). The Swin-small 

transformer had an AUC of 0.9996, with an F1-score of 0.9819, and a lower test accuracy 

of 98.19% (Table 3). The Convit-small transformer showed better performance an AUC of 

0.9997, with an F1-score of 0.9885, and a test accuracy of 98.85%, (Table 4). The Crossvit-

small transformer had the highest baseline effectiveness with an AUC of 0.9997, an F1-score 

of 0.9881 and a test accuracy of 98.91%, (Table 5). 

With geometric augmentation, the Swin-tiny transformer achieved an AUC of 0.9998, with 

an F1-score of 0.9878 and a test accuracy of 98.78% (Table 2). The Swin-small transformer 

showed an AUC of 0.9997, an F1-score of 0.9867, and a test accuracy of 98.67% (Table 3). 

The Convit-small transformer had an AUC of 0.9995, an F1-score of 0.9795, and a test 

accuracy of 97.94% (Table 4). The Crossvit-small transformer also achieved an AUC of 

0.9997, with an F1-score of 0.9872 and a test accuracy of 98.78% (Table 5). Geometric 

99

98.96

99

98.44

98.96

98.93

98 98.2 98.4 98.6 98.8 99 99.2

Baseline

WGP-GAN Aug

DCGAN Aug

Geometric Aug

Cut Mix Aug

Mix Up Aug

99.04

98.93

99.15

99

98.81

99.26

98.4 98.6 98.8 99 99.2 99.4

Baseline

WGP-GAN Aug

DCGAN Aug

Geometric Aug

Cut Mix Aug

Mix Up Aug

98.82

99.07

98.85

98.78

99.04

98.81

98.6 98.7 98.8 98.9 99 99.1

Baseline

WGP-GAN Aug

DCGAN Aug

Geometric Aug

Cut Mix Aug

Mix Up Aug

98.82

99.07

99

98.89

98.78

98.74

98.5 98.6 98.7 98.8 98.9 99 99.1

Baseline

WGP-GAN Aug

DCGAN Aug

Geometric Aug

Cut Mix Aug

Mix Up Aug



 

109                       Benchmarking Vision Transformers for Satellite Image Classification … 

 

augmentation improved the effectiveness of Swin tiny and Crossvit-small, but Convit-small 

showed a decline. 

Mixup data augmentation provided the highest boost in test accuracy for the Swin small 

transformer, reaching 99.26%, with an AUC of 0.9996 and an F1-score of 0.9871 (Table 3). 

The Convit-small transformer also benefited significantly, achieving a test accuracy of 

98.98%, an AUC of 0.9995, and an F1-score of 0.9880 (Table 4). The Crossvit-small 

transformer showed a test accuracy of 98.74%, an AUC of 0.9998, and an F1-score of 0.9880 

(Table 5). The Swin-tiny transformer had a test accuracy of 98.41%, an AUC of 0.9996, and 

an F1-score of 0.9841 (Table 2). Mixup augmentation significantly enhanced the 

performance of Swin small and Convit-small, while Swin-tiny showed less improvement. 

CutMix data augmentation resulted in the highest performance for the Swin small 

transformer with a test accuracy of 98.96%, an AUC of 0.9998, and an F1-score of 0.9896 

(Table 3). The Convit-small transformer showed a test accuracy of 98.50%, an AUC of 

0.9997, and an F1-score of 0.9850 (Table 4). The Crossvit-small transformer had a test 

accuracy of 98.28%, an AUC of 0.9997, and an F1-score of 0.9828 (Table 5). The Swin tiny 

transformer experienced a significant drop in effectiveness with a test accuracy of 97.07%, 

an AUC of 0.9994, and an F1-score of 0.9703 (Table 2). CutMix was highly effective for 

Swin-small but resulted in a performance decline for Swin-tiny. 

WGP-GAN augmentation performed well across all models. The Swin-tiny transformer 

achieved a test accuracy of 98.70%, with an AUC of 0.9998 and an F1-score of 0.9870 

(Table 2). The Swin small transformer had a test accuracy of 99.00%, an AUC of 0.9997, 

and an F1-score of 0.9900 (Table 3). The Convit-small transformer showed a test accuracy 

of 98.83%, an AUC of 0.9997, and an F1-score of 0.9893 (Table 4). The Crossvit-small 

transformer had a test accuracy of 98.84%, with an AUC of 0.9999 and an F1-score of 0.9889 

(Table 5). WGP-GAN was particularly effective for Swin-small and Crossvit-small, 

providing notable improvements in test accuracy and F1-scores. 

DCGAN augmentation showed mixed results. The Swin tiny transformer had a test 

accuracy of 98.56%, an AUC of 0.9998, and an F1-score of 0.9855 (Table 2). The Swin 

small transformer achieved a test accuracy of 98.70%, with an AUC of 0.9997 and an F1-

score of 0.9870 (Table 3). The Convit-small transformer displayed a noticeable drop in test 

accuracy to 97.73%, with an AUC of 0.9995 and an F1-score of 0.9783 (Table 4). The 

Crossvit-small transformer had a test accuracy of 98.54%, an AUC of 0.9996, and an F1-

score of 0.9854 (Table 5). DCGAN was less effective for ConVit small, showing 

inconsistent results across the models. Across all augmentation methods, Mixup and WGP-

GAN generally provided the best improvements in test accuracy. The Swin small 

transformer benefited significantly from Mixup augmentation, achieving the highest test 

accuracy of 99.26% (Table 3). WGP-GAN also performed well across various models, 

particularly enhancing Swin small and Crossvit-small (Tables 3 and 5). Geometric 

augmentation was most effective for Swin tiny and Crossvit-small (Tables 2 and 5), while 

CutMix was notably less effective for Swin tiny but beneficial for Swin small (Tables 2 and 

3). DCGAN showed inconsistent results, being less effective for Convit-small but relatively 

better for Swin models (Table 4). Tailoring augmentation strategies to specific model 

architectures is crucial for optimizing performance. 
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Table 2: Results of applying Swin-tiny transformer on Eurosat Dataset. 

 

 

 

 

 

 

Table 3: Results of applying Swin-small transformer on Eurosat Dataset. 

Augmentation Method Epoch Validation Acc. AUC F1 Test Acc. 

Baseline 9 99.04 0.9996 0.9819 98.19 

WGP-GAN Aug 18 98.93 0.9997 0.9900 99.00 

DCGAN Aug 25 99.15 0.9997 0.9870 98.70 

Geometric Aug 19 99.00 0.9997 0.9867 98.67 

Cut Mix Aug  16 98.81 0.9998 0.9896 98.96 

Mix Up Aug 20 99.26 0.9996 0.9871 98.70 

 

Table 4: Results of applying Convit-small transformer on Eurosat Dataset. 

Augmentation Method Epoch Validation Acc. AUC F1 Test Acc. 

Baseline 20 98.82 0.9997 0.9885 98.85 

WGP-GAN Aug 22 99.07 0.9998 0.9883 98.83 

DCGAN Aug 13 98.85 0.9995 0.9783 97.83 

Geometric Aug 12 98.78 0.9996 0.9795 97.94 

Cut Mix Aug 24 99.04 0.9997 0.9850 98.50 

Mix Up Aug 17 98.81 0.9995 0.9898 98.98 

 

Table 5: Results of applying Crossvit- small transformer on Eurosat Dataset. 

Augmentation Method Epoch Validation Acc. AUC F1 Test Acc. 

Baseline 14 98.82 0.9997 0.9891 98.91 

WGP-GAN Aug 24 99.07 0.9999 0.9889 98.89 

DCGAN Aug 9 99.00 0.9999 0.9854 98.54 

Geometric Aug 25 98.89 0.9996 0.9872 98.72% 

Cut Mix Aug 6 98.78 0.9997 0.9828 98.28 

Mix Up Aug 5 98.74 0.9998 0.9874 98.74 

 

Augmentation Method Epoch Validation Acc. AUC F1 Test Acc. 

Baseline 8 99.00 0.9997 0.9867 98.67% 

WGP-GAN Aug 20 98.96 0.9998 0.9870 98.70% 

DCGAN Aug 15 99.0 0.9998 0.9855 98.56% 

Geometric Aug 15 98.44 0.9998 0.9878 98.78% 

Cut Mix Aug  11 98.96 0.9994 0.9703 97.07 

Mix Up Aug 24 98.93 0.9996 0.9841 98.41 
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6 Conclusion 

The results demonstrate that data augmentation techniques can enhance the performance of 

transformers for the classification of satellite image. However, the success of these 

techniques is highly dependent on the model architecture. Mixup and WGP-GAN 

augmentations generally provided the best improvements, making them strong candidates 

for further exploration in future studies. Geometric augmentation and CutMix also showed 

promise but require careful consideration of the model being used. Tailoring augmentation 

strategies to specific models is crucial for optimizing performance and achieving the best 

possible results. In conclusion, this study provides effective visions into the usage of data 

augmentation techniques for improving transformer models in various tasks of remote 

sensing. Future research should continue to explore and refine these techniques, considering 

the unique characteristics of different model architectures and datasets. 
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