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Abstract 

     Convolutional Neural Networks (CNNs) are used for the sound signal 
classification successfully due to their capabilities of deep architecture with 
pooling schemes. Since the pooling methods in CNN work as regularization to 
minimize the effect of overfitting which further improves the performance of CNN. 
Various pooling techniques are proposed to enhance the performance of CNN for 
classification, but mostly all pooling approaches are considered for the 
classification of images. Sound samples are of a different nature from the static 
images and the temporal sequences of sounds play a crucial role in the 
digitalization of sound samples. The presented work of this paper considered the 
different pooling schemes with convolutional neural networks to improve the 
classification accuracy for environment sounds. In this approach, two different 
CNN architectures are implemented and analyzed with various pooling schemes at 
local and global levels. Further, the paper presented a new pooling scheme at the 
local and global pooling aspects to improve the performance. This new pooling 
scheme is considered as max-min difference pooling. The simulated results are 
obtained on the UrbanSound8k dataset with different optimizers and proposed 
pooling schemes. The experimental results indicate improved performance of CNN 
model with max-min difference pooling with global aspect.  

     Keywords: CNN, Sound Classification, Stochastic Pooling, Hybrid Pooling, Deep 
Learning. 

1      Introduction 

In most signal processing techniques, sound samples are considered in the form of time-

frequency patches. These samples contain original sounds with lots of white noises and 

other inferences in the sounds. Several machine learning and deep learning techniques have 

been proposed to get better results for the classification of environmental sounds [1]. An 

automated environmental sound classification system is used in several areas, like sound 

investigation and identification, in various applications of surveillance in the public 

domain. Earlier work considered the pre-trained models of deep neural networks. These 



 

Rashmi et al.                                                                                                          148 

models were trained for image classification and used on the existing datasets of 

environment sounds [2]. Generally, the spectro-temporal features are considered for the 

representation of input feature maps [3]. Environmental sound, unlike regular and 

structured sounds, lacks both static time patterns and semantic sequences. Therefore, 

identifying universal features from the sound samples presents a challenge. Besides this, 

environmental sound contains a significant amount of white noise and unrelated sound, 

leading to the emergence of complex structures such as variability, diversity, and 

unstructured characteristics [4, 5]. Various signal processing methods and machine 

learning techniques have been used to address these issues for environmental sound 

classification. Initially, the feature extraction and classification problems were considered 

separate in the form of pre-processing and classification. In these approaches, the feature 

extraction step has been implemented with manual operations like mel-frequency cepstral 

coefficient (MFCC), Mel spectrum feature, and wavelet transformation [6]. Further, in the 

second step, machine learning methods like Support Vector Machine (SVM) [7], K-nearest 

neighbors [8], matrix factorization [9], and extreme learning algorithms were employed to 

generate classification from the extracted features. These approaches improved 

classification performance but consumed lots of time to construct feature representations 

and to identify the best combination of functions. Deep Neural Networks have been proven 

to have a strong ability to extract features automatically and effective classification with 

various deep neural network models [10]. Attention mechanisms have also been applied 

for sound recognition and speech sentiment analysis [11]. In this approach, the temporal-

frequency attention-based convolutional neural network model is proposed on the 

UrbanSound8k and ESC-50 datasets to show the accuracy of the model for classification 

[12]. In deep learning models, earlier models utilized Log-Mel and its spectrogram as a 

two-dimensional feature representation to input into the network for learning and 

classification [13]. The data augmentation strategies were also used to fulfill the 

requirement of the huge amount of data to enhance the capabilities of the Deep Neural 

Network [14]. Further, the original audio waveform as input to train CNN is proposed, and 

a large number of experiments have been conducted with the number of CNN layers as the 

independent variable [15]. In another development, an end-to-end classification model 

based on 1D-CNN is used for direct feature extraction from raw audio waveforms of any 

length [16]. In the recent development of deep learning for sound classification, the 

attention mechanism is combined with a deep neural network to calculate the weight metric 

and automatically assign the corresponding weights for each frame-level feature [17]. 

Further, the attention mechanism with deep learning is used for the environmental sound 

classification [18]. Later on, various methods were employed for feature extraction from 

sound signals, and deep neural networks with deep architecture exhibited better 

classification performance [19]. The convolution layers in the architecture aim to extract 

the patterns found within the local region of the input 2D time-frequency patch of sound 

signals. This can be obtained with many filters on the inputs, computing the inner product 

of the filters at every location in the input, and outputting these as feature maps. The 

resulting activations are then passed to the pooling layer and further to the dense network, 

followed by the classification layer. The accuracy of the classification depends on various 

parameters. Among them, the pooling schemes have an important role in addressing the 

overfitting issues of convolutional neural networks. Regularization is considered one of 

the prominent methods to minimize the overfitting of any arbitrary sample example. 

Different approaches to regularization, such as dropout and data augmentation of the 

training set [20], are used. The dropout process [21] stochastically considers half of the 

activation with a layer to zero during the training process. It significantly improves the 

performance of large neural networks for classification, but it does not exhibit the same 
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benefits for convolutional layers. Hence, there is a need to provide a stochastic 

regularization also for the convolutional layers. Pooling schemes explore the regularization 

in deep convolutional neural networks and improve the performance of the network for 

classification. In deep convolutional neural network architectures, the pooling layer is 

considered after each convolution layer. The pooling layer uses the feature map provided 

by the kernel of the convolution layer. Commonly, the max and average pooling functions 

are used in pre-trained CNNs, but these types of conventional pooling schemes exhibit 

drawbacks. In average pooling, all elements in a pooling region are considered, even if 

many have low magnitudes, and in max pooling, the problem of overfitting the training set 

occurs [22]. In the literature of deep learning, various pooling schemes are discussed for 

CNN to obtain better classification accuracy. It includes hybrid pooling [23], max-out 

network pooling [24], spatial pooling [25], spatial pyramid pooling [26], fractional pooling 

[27], rank-based pooling [28], soft pooling, and stochastic pooling [20]. A successful 

variant of pooling is Lp pooling [29]. Lp pooling can be viewed as a continuous 

parameterization transition from average to max pooling. Lp pooling has shown a large 

improvement in error rate in the comparison of max pooling. The stochastic pooling [20] 

is another improved pooling strategy because it is less prone to overfitting due to its random 

nature, which picks the activations within each pooling region based on the normalized 

probability of activation values. Most of the pooling schemes proposed in the literature are 

considered for the classification of images [30], but the nature of sound samples is different 

from the images. The temporal sequences of voice play a crucial role in sound 

identification. Besides this, the background noises in the original sample affect the 

classification accuracy. Therefore, the spiral pattern with 2D-M4-based pooling is 

proposed for the environmental sound classification [31]. This method used the statistical 

moments to generate low, middle, and high-level features. This proposed approach 

improves the environmental sound classification but increases computation complexity 

and lots of statistical calculations. Thus, lots of works have been reported for the 

environmental sound classification using pre-trained convolutional neural network models 

with different pooling schemes. In most of the architectures, a local pooling criterion is 

employed after each convolution layer to reduce the size of the feature map produced by 

the kernel of the convolution layer. In most of the cases, max pooling or average pooling 

is used for further processing. Further different combinations of both pooling schemes are 

considered to improve the classification accuracy. Despite all of these attempts and 

implementations of hybrid pooling schemes, the pre-trained convolutional neural network 

could not reach the expected accuracy for sound data due to the variability and 

characteristics of sound samples and its representation of the input feature map of a 2D 

mel-spectrum image. To keep all these issues in mind, we considered the two different 

types of convolutional neural networks with different pooling schemes and local and global 

pooling criteria to analyze the performances of CNN for the classification of environmental 

sound classification. The main objective of the proposed research work is to design 

convolutional neural network models with different hybrid pooling schemes to analyze the 

performance for the classification of environmental sound. In this implementation, first, 

we considered a Visual Geometry Group Network (VGGNet) convolutional neural 

network model, which consists of hierarchical convolutional layers with an activation 

function followed by batch normalization. The pooling layer is employed only after the 

last convolution layer instead of after each convolution layer. The local pooling is used for 

the first architecture, followed by the dense network and classification layer. In the second 

architecture, the same hierarchy has been followed, but local pooling is replaced with the 

global pooling scheme. In this architecture, the dense network has not been employed. The 

output feature map of global pooling is directly passed to the classification layer. In both 
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the pooling criteria, different types of hybrid pooling schemes like a linear combination of 

max-average pooling, a linear combination of max-min pooling, soft pooling, and 

stochastic pooling are employed to analyze the performance of convolutional neural 

networks. In addition to this, stochastic pooling is used with two methods. In the first 

method, the probability feature map is constructed from the feature map using the multi-

nominal distribution formed by the activation with the pooling region, and then the 

activation is selected using the probability function. In the second method, the activation 

value is selected on a random basis without drawing the probabilistic map. Beside all these 

methods, the paper also considers another hybrid approach of pooling named as, max-min 

difference pooling. The major contributions of the presented work in the paper are as 

follows:  

• Two different convolutional neural network models are designed. These are 

different from existing pre-trained VGGNet type models. 

• Local pooling is applied after the last convolution layer, followed by two dense 

layers and a classification layer. 

• Global pooling layer is considered also after the last convolution layer followed by 

classification layer. The dense network has been removed from second architecture to 

obtained better normalization. 

• Various hybrid pooling schemes are explored in combination with different 

stochastic optimization methods. 

• A novel local pooling scheme, max-min difference pooling, is introduced to 

analyze the performance of both architectures for environmental sound classification. This 

approach reduces overfitting through adaptive weight scaling. 

• The proposed CNN architectures with max-min difference pooling optimize the 

number of parameters and reduce training time with the improvement in computational 

efficiency.     

Thus, the different pooling schemes with local and global pooling criteria are considered 

to analyse the performance of both the proposed CNN architectures on the UrbanSound8k 

dataset of environment sounds.  

In the experimental process of implementing the proposed Convolutional Neural Networks 

(CNNs) with hybrid pooling methods for sound classification, several challenges were 

encountered. Integrating hybrid pooling methods, such as combining max pooling and 

average pooling, presented a significant challenge due to the need for careful design to 

prevent information loss and preserve feature representation. To address this, multiple 

configurations of pooling methods were implemented and thoroughly tested. By evaluating 

the performance impact of each experiment on the proposed model, it became possible to 

identify the most effective hybrid pooling scheme, finally enhancing the performance of 

the proposed model while minimizing any drawbacks related to specific pooling methods. 

Overfitting is also a big problem, especially when using deep neural network models with 

limited data. To solve this, we used several tricks. First, we applied regularization 

techniques like dropout, which help prevent the model from relying too much on specific 

features. Batch normalization and L1 regularization with a regularization factor of 0.001 

are helped to reduce overfitting, making the proposed model more reliable when 

classifying new, unseen sounds. The selection of a suitable optimizer for sound 

classification system presented a significant issue, since different optimizers like 

Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam) and Adaptive 
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Gradient Algorithm (AdaGrad) exhibit different behaviors based on the data and model 

architecture. A systematic approach was implemented to deal with this complexity. A 

series of experiments are conducted and the results of these experiments are then analysed 

to ensure the most effective optimizer for sound classification task. This systematic process 

ensured that the chosen optimizer was well-suited for sound classification and improving 

the performance of the model and training efficiency. 

This paper is organized as follows: section 2 of the paper discusses the Material and 

methods for different pooling schemes which includes architecture framework, pooling 

methods and experimental design. Section 3 of the paper consist the implementation and 

simulation design of proposed model of convolution neural network and Section 4 includes 

the results and discussion of performance analysis with various methods of pooling and 

state-of-art performance of CNNs for the Urban Sound classification. Finally, the 

conclusion is presented in the last section followed by the references. 

2      Materials and Methods 

Generally, convolutional neural networks consist of kernel layers followed by the pooling 

layers, flatten layers, dense network, and classification layer. In this type of architecture, 

the input sample is presented to the first kernel layer, which extracts pattern information 

within a local region of the input sample to compute the inner product between the region 

of the input sample and associated weights. The generated feature maps of the output of 

the layer are passed to the pooling layers for down-sampling of the feature map and to learn 

large-scale features that are invariant to small local transformations. The same operation 

repeats for the successive convolutional layers. In this paper, we considered different 

convolutional neural network architectures to incorporate pooling methods more 

effectively and impactful. 

2.1      Proposed Architectural Framework 

The proposed architectural frameworks build upon convolutional blocks designed for 

efficient feature extraction. Each block within the architecture consists of a convolutional 

layer followed by a Rectified Linear Unit (ReLU) activation function and batch 

normalization to ensure stability during training. These fundamental blocks are replicated 

three times, forming the basic structure of the models. These repeated convolutional blocks 

enhance feature extraction and allow the network to identify complex patterns within the 

input feature map. After stacking the three convolutional blocks, each convolutional block 

is followed by a pooling layer to down-sample the feature maps and to learn large-scale 

sound features that are invariant to small local transformations. Here, two different 

approaches are used to facilitate the pooling scheme. In the first approach, local pooling is 

used followed by the flattened layer, dense layers, and classification layer as shown in Fig 

1(a), and in the second approach, global pooling is used and eliminates the dense layer. 

The output of the global pooling is presented to the flattened layer followed by the 

classification layer as shown in Fig. 1(b). The proposed convolutional neural networks are 

shown below Figs. 
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Figure 1(a): First Proposed Convolution Neural Network Architecture with Local 

Pooling 

 

Figure 1(b): Second Proposed Convolution Neural Network Architecture with global 

pooling 

In our proposed implementations, various types of pooling are utilized, namely max 

pooling, average pooling, linear combination of max-average, max-min, soft pooling, and 

stochastic pooling. After all convolutional blocks, the CNN model is flattened to convert 

the multi-dimensional feature maps into a one-dimensional feature vector, which is more 

suitable for the classification layers. The first proposed model contains two dense layers. 

The first dense layer has 128 units, activated by the ReLU activation function, and 

incorporates a dropout layer with a rate of 0.20 to mitigate overfitting. The second dense 

layer follows with 64 units, using the same activation function and dropout setup. Both 

dense layers also include L1 regularization to prevent overfitting. 

We chose 128 units for the first dense layer because the flatten layer produces a feature 

map with dimensions 128×1 for each pattern. The second dense layer consists of half the 

units of the first dense layer, i.e., 64 units. The selection of the number of units for the 

dense layers is based on the dimensionality of the feature map from the flatten layer, with 

the second layer containing half the units of the first dense layer to achieve a balanced 

downscaling. The second proposed model contains no dense layer. The output of the global 

pooling layer passes to the flatten layer and is directly presented to the output layer. Finally, 

the output layer with 10 units, corresponds to the number of classes and employs the 

softmax activation function to produce probabilities for each class. The implementation 

details with hyperparameters for the first and second CNN architectures can be shown in 

Table 1 and Table 2 respectively. 
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Table 1: Implementation details with hyper parameters for the first architecture 

So. 

No. 

Layer 

Type 

# of 

Filters 

Ker

nel 

Size 

Pool 

Size 

Activat

ion 

functio

n 

Para

meter

s 

Output Shape Regularizat

ion/Dropout 

1. Conv2D 1 128 2x2  ReLU 640 (None,64,64, 128)  

2. BatchNorm     512 (None,64,64, 128)  

3. Pooling   2x2   (None,32,32,128)  

4. Conv2D 2 64 2x2  ReLU 32,832 (None,16,16,64)  

5. BatchNorm     256 (None,16,16,64)  

6. Pooling   2x2   (None,8,8,64)  

7. Conv2D 3 32 2x2  ReLU 8,224 (None,4,4,32)  

8. BatchNorm     128 (None,4,4,32)  

9. Pooling   2x2   (None,2,2,32)  

10. Flatten      (None, 128)  

11. Dense 128   ReLU 16,512 (None, 128) L1 

Regularizati

on (λ=0.001) 

12. Dropout      (None, 128) Dropout 

Rate: 20% 

13. Dense 64   ReLU 8,256 (None, 64) L1 

Regularizati

on (λ=0.001) 

14. Dropout      (None, 64) Dropout 

Rate: 20% 

13. Dense 10   Softma

x 

650 (None, 10)  

Total Params: 68,010 

Trainable Params: 67,562 

Table 2: Implementation details with hyperparameters for the second architecture 

So. 

No. 

Layer Type # of 

Filter

s/ 

Units 

Kerne

l Size 

Pool 

Size 

Activat

ion 

functio

n 

Para

meter

s 

Output Shape Regulariz

ation/Dro

pout 

1. Conv2D 1 128 2x2  ReLU 640 (None,64,64, 128)  

2. BatchNorm     512 (None,64,64, 128)  

3. Pooling   2x2   (None,32,32,128)  

4. Conv2D 2 64 2x2  ReLU 32,832 (None,16,16,64)  

5. BatchNorm     256 (None,16,16,64)  

6. Pooling   2x2   (None,8,8,64)  

7. Conv2D 3 32 2x2  ReLU 8,224 (None,4,4,32)  

8. BatchNorm     128 (None,4,4,32)  

9. GlobalPooling      (None, 32)  

10. Flatten      (None, 32)  

11. Dropout      (None, 32) Dropout rate: 

20% 

12. Dense 10   Softma

x 

330 (None, 10) L1 

Regularization 

(λ=0.001) 
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Total Params: 42,922 

Trainable Params: 42,474 

2.2      Pooling Methods 

It is well-considered that pooling does not only decrease the size of the receptive field 
of convolutional kernels over layers but also reduces the computational complexity and 
memory requirements as it reduces the resolution of the feature map while preserving 
important features that are needed for processing by the subsequent layers [32]. Thus, the 
pooling is an important step in convolutional-based systems that reduce the dimensionality 
of the feature maps. The pooling operators provide a form of spatial transformation 
invariance as well as reduce the computational complexity for upper layers by eliminating 
some connection between convolutional layers. This layer executes the down-sampling on 
the feature maps coming from the previous layers and produces the new feature maps with 
a condensed resolution. Generally, this layer has two main purposes, the first is to reduce 
the number of parameters or weights, thus reducing the computational cost and the second 
is to overcome the problem of overfitting. Normally, there are two groups of pooling used 
for the convolutional neural networks. The first one is local pooling in which the pooling 
is performed from small local regions to down-sample the feature maps. The second one 
is global pooling, which is performed from each of the entire feature maps to get a scalar 
value of a feature vector [33]. From the viewpoint of sound signals, the pooling is a form 
of non-linear down-sampling [34]. Therefore, for the environmental sound signals both the 
local and global pooling are considered for effective classification of the sound signals. 

 
Convolution neural networks are widely used for the classification of environmental 

sound signals with different pooling methods. Generally in all these CNN architectures, 
environment sound signals are considered as the 2D Time-Frequency patches and 
presented as input to the CNN. A powerful CNN is composed of several feature extraction 
stages and each stage consists of a convolution layers, a non-linear transformation layer, 
and a pooling layer. The convolution layer considers the inner product of the linear filter 
and the underlying receptive field followed by a nonlinear activation function at every local 
portion of the input. Thus, in this layer, the output feature map can be represented as [38]: 

yk = f(wk ⊗  x)        (1) 

Where, x denotes the input vector, wk is the associated convolution filter with the kth 
feature map, ⊗ indicates the convolution operator and f(∙) is the non-linear activation 
function. Usually, there are two kinds of non-linear transformations. One is the local 

response normalization, which yields the normalized output ykij
 at the location (i, j) in kth 

feature maps as [40]: 

ykij
=

xkij

(1+ 
α

N
.∑ (xlij)

2k+
N
2

l=k−
N
2

)

β         (2) 

Where the sum runs over N adjacent feature maps at the same spatial location and the 
parameters of α and β can be determined by using a validation set. 

Another is the local contrast normalization [41] with the normalized output ykij
 as be 

computed as: 

ykij
=

xkij

(1+ 
α

M1M2
.∑ ∑ (xkpq−mkij

)
2j+

M2
2

 q=j−
M2

2

i+
M1

2

p=i−
M1

2

)

β      (3) 
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Here, the local contrast is computed within a local M1 × M2 region with the center at 
(i, j). xkpq

is the element at (p, q) within the pooling region and mkij
is the mean of all x 

values within the M1 × M2 region is the kth feature map as [41]: 

mkij
=  

1

M1M2
∑ ∑ xkpq

j+
M2

2⁄

q=j− 
M2

2⁄

i+
M1

2

p=i−
M1

2

           (4) 

The different feature maps are generated from different filters of the convolution layer. 
The generated output yk further passes to the pooling layer and produces the pooled feature 
map. Let a set of feature maps is F and a pooling region P defined on one of these feature 

map i.e. Fk. Let x ∈ ℝW′×H′
 represents the features that are inside the pooling region P on 

Fk. It covers both the local and global pooling. If W = W′and H = H′ where W′& H′are 
pooling region then it is a global pooling and if W′ < W and H′ < H then it shows the 
local pooling. These W & H represent the width and height of the feature map respectively. 

In most of the convolution neural network models, the max and average pooling are 
used. The max pooling selects the largest element in each pooling region as [32]: 

fmax(x) = maxxi∈ℝ(xi)i=1
N               (5) 

Fig. 2 is representing an example of exhibiting the max pooling scheme. 

 
Figure 2: Conceptual representation of max pooling 

 
In average pooling the arithmetic sum of the elements in each pooling region is 

considered as [32]: 

favg(x) =
1

N
∑ |xi|xi∈x

N
i=1           (6) 

here N = W. H is the number of elements in x i.e. xi is the ith  element of x where i =
1,2, … … N. Fig. 3 is representing an example of exhibiting the average pooling scheme.  

 
Figure 3: Conceptual representation of average pooling 

 
Max pooling and the average pooling have their advantages and disadvantages. During 

the training of a deep convolution network, in the average pooling, all elements in a pooling 
region are considered, even if many have low magnitude, and in the max pooling the 
problem of overfitting the training set occurs [20]. In the sound dataset, the feature map is 
usually represented in the two-dimension time-frequency patches. These patches also 
contain white noise due to which the local pooling and global pooling methods exhibit the 
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data over the training of a high rate. Mostly, the CNNs use the average pooling and max 
pooling [37] due to their simplicity but they do not have parameters to tune. Another 
problem with the sound signal is overlapping regions with actual sound and background 
noise with the existence of white noise. The log-mel spectrum or MFCC feature map of 
the sound samples is generally considered as the 2D image. These images include the 
features of actual sounds and noises. Thus the feature images of the sound samples are of 
the ever changing nature. Thus, it is of high probability that the defective aspects of max 
and average pooling will exhibit negative effects in applying pooling layers to CNNs. 
Therefore, the other methods of the pooling are considered to apply as a solution. In this 
attempt, these deterministic pooling operations can be replaced with stochastic procedures 
or some hybrid approaches.  

Hence, with the deterministic pooling operation, the mixed pooling is considered. In 
this hybrid approach, the max-pooling and average pooling is combined linearly as [38]: 

 

fj = λ max
i∈Rj

xi + (1 − λ)
1

|Rj|
∑ xii∈Rj

         (7) 

 
Where λ decides the choice of either using max pooling or average pooling. The value 

of λ is selected randomly and it is recorded for forward-propagation order and it is used 
during the back-propagation process. Fig. 4 represents an example of exhibiting the linear 
combination hybrid pooling schemes.  

 
Figure 4: Conceptual representation of linear combination of max-average pooling 

 
This hybrid approach can be further extended with the linear combination of max-min 

pooling as: 

fj = μ max
i∈Rj

xi  + (1 − μ)mini∈Rj
xi    with 0 ≤ μ ≤ 1   (8)  

Here, again the value μ is assigned randomly in between 0 and 1. It is also used during 
the back-propagation process. Fig. 5 represents an example of exhibiting the max-min 
hybrid pooling schemes. 

 
Figure 5: Conceptual representation of linear combination of max-min 
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Another hybrid approach is considered as Lp pooling [39]. This approach claims that 
its generalization ability is better than max pooling. In this pooling approach, a weighted 
average of inputs is taken in the pooling region and can be expressed as [39]:  

fj = (
1

|Rj|
∑ xi

p
i∈Rj

)

1
p⁄

         (9) 

Where, fj represents the output of the pooling operator at location j, xi is the feature 

value at location i within the pooling region Rj. The value of p varies between 1 and ∞, 

and we keep p > 1 to set the trade-off between average and max pooling. The 2D images 
of sound samples contain variations due to white noise or variations in the voice pitches. 
The mel-log or MFCC spectrum of sound samples carries actual words with a huge amount 
of noise. The 2D images of these spectrums also carry the same. The region of the input 
set is to identify the actual sample from the images. Thus, it is required to localize the area 
of the actual voice in the 2D image. Therefore, in that case, the mixing proportion should 
depend on the characteristics of each image rather than the characteristics of the actual 
voice data. Thus, the gated max-average pooling [46] is considered to address these issues 
as:         

S(x) = σ(wTx)Smax(x) + (1 − σ(wTx))Savg(x)                  (10) 

Where, w ∈ Rn is a weight vector considered as a “gating mask” to be learned when 
training the network and σ(. ) is a sigmoid function [40]. In this approach, the parameters 
can also be learned separately for each layer or separately for each of the channels in each 
layer of the network. Another method for combining the max pooling and average pooling 
is considered in the form of soft pooling approach [41]. It is used as an intermediate form 
between max and average pooling. In this approach, a smooth differentiable function is 
used to approximate the max and average pooling for different parameters settings as [41]:  

S(sp) = (
1

N
∑ |xi|

rN
i=1 )

1
r⁄

            (11) 

Where, the parameter r controls the softness. Although various methods of pooling are 
proposed with different combinations of max and average pooling, in all such methods the 
issue of overfitting occurs during the training with CNN. The stochastic pooling is 
proposed to reduce overfitting by introducing randomness in the pooling procedure. 
Therefore, inspired by the dropout techniques, Zeiler and Fergus [20] proposed the idea of 
stochastic pooling. The stochastic pooling applies multinomial distribution to pick the 
value randomly. In this process, first probabilities are computed for each region by 
normalizing the activations within the regions, as [46]: 

pi =
ai

∑ akk∈Rj

             (12) 

These probabilities create a multinomial distribution that is used to select location l 
and corresponding pooled activation al  based on  p . Multinomial distribution selects a 
location l within the region as: 

sj  =  al where l~P(p1, … , p|Rj| )         (13) 

Thus, the activations are selected based on the probabilities calculated by multinomial 
distribution. In this, all activations get the chances according to their probability 
proportionate. In this process, we have the set of k possible results a1, a2, … … . ak with the 
associated probabilities (p1, p2, … … … . . pk) i.e. ∑ pk = 1. 

Here, the P represents the probability function that constructs the index of the region 

of the filter, and the corresponding activation value is selected with sj = al. The probability 

function P, which is used for the selection of index from the probability of the each 
activation as: 

P(X1, X2, … … … … . Xn) =
N!

∏ xi
n
i=1

∏ Pi(xi)
n
i=1           (14) 

Where, xi and non-negative and ∑ xi = Nn
i=1  with ∑ Pi = 1n

i=1  
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Hence, the probability map selects the activation value from the feature map. Let the 
feature map from the convolution layer is separated into M × N non-overlaping blocks, 

where each block region is with the size of r1 × r2, Now we consider the mth row and nth 
column block as. 

i.e., Bm,n = [bm,n(r1, r2), r1 = 1, … … , R1and r2 = 1, … … , R2]        (15) 

Where, 1 ≤ m ≤ M, 1 ≤ n ≤ N 
The stochastic pooling provides a way to overcome with the disadvantages of the 

conventional pooling methods [42]. It has a chance to reserve the greatest values and 
reduces the occasion rates of overfitting. It generates the probability map Sm,n(r1, r2) as 

[42]: 

Sm,n(r1, r2) =
bm,n(r1,r2)

∑ ∑ bm,n(r1,r2)
R2
r2=1

R1
r1=1

            (16) 

Where ∑ ∑ bm,n(r1, r2)R2
r2=1

R1
r1=1 = 1 

After that the random value is created in i.e. R = (r1, r2)         (17) 
It considers the discrete probability distribution for representing the probabilities of 

activation values from the feature map. Fig. 6 is representing an example of exhibiting the 
stochastic pooling scheme.   

 
Figure 6: Conceptual representation of stochastic pooling 

 
After analyzing all existing hybrid pooling methods and considering their limitations, 

we propose a different pooling scheme named max-min difference pooling. In this pooling 
scheme, we compute the difference between the gated max and min values of the pooling 
window. Max-min difference pooling can be expressed as: 

fs = σ(wTx)[max(xi) − min(xi)]     (18) 
Where w ∈ ℝn is a weight vector that is learned during network training, and σ(⋅ ) is the 
sigmoid function. In this pooling method, an adaptive weight is considered, which is 
updated during training and scales the difference between the maximum and minimum 
values of the pooling window to obtain the feature map. 
 
The advantage of this pooling method is that it reduces overfitting while optimizing 
parameters during each epoch. 

2.3      Experimental Design 

In this present work, we used the UrbanSound8k dataset for classification of 
environmental sounds to provide the training to the proposed Convolutional Neural 
Networks. UrbanSound8k dataset is containing 8732 labelled sound audios (≤ 4s). These 
audios come from ten urban sound classes including Air conditioner (AI), Car horn (CA), 
Children playing (CH), Dog bark (DO), Drilling (DR), Engine idling (EN), Gunshot (GU), 
Jackhammer (JA), Siren (SI), and Street music (SM). In UrbanSound8K, the occurrences 
are limited to a maximum duration of 4 sec. To avoid wide variability of class distributions, 
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the designers limit the number of clips per class to 1000, resulting in 8732 labeled clips. 
The audio clips are available in .wav format, and the corresponding metadata file is in .csv 
format. The dataset is split into two sets, on for training set which containing 6985 audio 
samples, and rest 1747 audio samples for testing. The class distribution of the 
UrbanSound8k dataset can be shown in Table 3. 

 
Table 3: Class distribution of UrbanSound8K dataset 

 
 
Mel Frequency Cepstral Coefficient (MFCC) is the most widely used feature 

extraction scheme for speech recognition and audio classification due to its effectiveness 
in capturing the essential characteristics of audio sounds. Thus, in the proposed work, the 
MFCC method has been employed to extract features from urban sound samples. 
Typically, the audio data considered is sourced from existing datasets, consisting mostly 
of clean samples. Consequently, the spectrogram method is also utilized for feature 
extraction, transforming the audio data into time-frequency patches. During the feature 
extraction process, audio data undergoes pre-processing, and it involves sampling, 
quantization, pre-emphasis processing, and windowing, to convert analog audio signals 
into a sequence of audio frames. Subsequently, a log-scale Mel spectrogram is utilized to 
represent the pre-processed audio data as time-frequency patches. The ceptral features are 
extracted from the mel scaling frequency domain. The sound signal passes through and 
emphasizes where it will enhance the signal energy at a higher frequency. Now, there exists 
framing of the digital signal within a frame size of 20-30 ms, featuring either one-half or 
one-third overlap. The frames will be multiplied by a hamming windowing function to 
maintain continuity by reducing side lobs. The Fast Fourier Transform will transform the 
signal into the frequency domain to obtain the magnitude frequency response of the signal 
frames. A set of mel-filters are applied to the magnitude spectrum to emphasize certain 
frequency bands. The mel-frequency M(F′) related to the common linear frequency F can 
be considered as [44]: 

M(F′) = 2595 ∗ log (1 +
F

700
)         (19) 

A discrete cosine transform is applied on the log energy of the signal to generate 
different mel-scale cepstral coefficients. So finally, The DCT converts the signal back into 
a time domain as: 

Cm =  ∑ cos [πm ∗
(K−0.5)

N
] ∗ Ej

N
j=1       (20) 

Where, m is the index of the coefficient and N is the number of mel-filter outputs, Cm 

are the MFCCs for the frame. Ej  logarithm of the Mel-filtered values. Thus, two-

dimensional feature vectors in the form of TF-patches are used as input to the proposed 
convolutional neural networks architectures as shown in the Fig. 7. 

 
Figure 7: Spectrogram for Siren 
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Therefore, two-dimensional feature vectors, in the form of time-frequency patches, are 

employed as input to the proposed convolutional neural network architectures.  

3      Implementation and simulation Design 

In this present work, we used the UrbanSound8k dataset for classification of 
environmental sounds to provide the training to the proposed Convolutional Neural 
Network. In the proposed architecture, we have convolutional blocks. In each block, the 
convolutional layer consists of k kernels, each with a size of N×N, followed by batch 
normalization and an activation function. The fundamental operation in each convolutional 
neural network involves considering the input weight and the number of kernels. Let 
consider the input matrix as  (Ip), kernels as (K1, K2, … … … , KJ), and the output as O, with 

their respective sizes and the S defined as follows: 

S(x) = {

W1 × X1 × NI                            x = I 

WK × XK × NK   x = Kj(j = 1, … J),

WO × XO × NO                           x = O
    (21) 

Here, (W, X, N)  represent the size of height, width and channels of the matrix 
respectively. The subscript I, K and O represent input, kernel, and output, respectively. 
J denotes total number of filters i.e., the channel of input NI should equal the channel of 
kernel NK, and the channel of output NO should equal to the number of filters J. 

Let these filters move with padding of p  and stride of q , now we can get the 
relationship as: 

WO = 1 +
(2×p+WI−WK)

q
        (22) 

XO = 1 +
(2×p+XI−WK)

q
        (23) 

The output of channels will pass to the batch normalization and then activation 
function. The final output can be represented as: 

f1(X) = Pool(BN (ReLU(S(X))))     (24) 

Now this output works as the input for next convolutional block. In the next 
convolution block we have the same structure as previous one but the number of kernels is 
reduced with J − 2r and the size of the filters are also reduced with N − 2r1, where 1 <

r <
J

2⁄  and 0 < r1 < N. The output of next convolution can be expressed as: 

f2(X) = Pool(BN(ReLU(f1(X))))     (25) 

Similarly for the successive blocks we have, 

f3(X) = Pool(BN(ReLU(f2(X))))     (26) 

….. 

fN(X) = Pool(BN(ReLU(fN−1(X))))     (27) 

The sequence of operations i.e., convolutional layer filter, batch normalization and 
hybrid pooling is continue to each convolution block. Here, we are using different pooling 
methods to evaluate & analyse the performance of CNN. Now the activation map fN(X) 
passes through batch normalization and then the pooling layer for non-linear down-
sampling. The pooling layer (PL) provides the invariance-to-translation property to the 
fN(X). Hence to a N × N region, suppose the pixels within the region φ̅ are: 

   φ̅ = [

φ1,1 φ1,2 …
⋮ ⋮  

φN,1 φN,2 …
    

φ1,N

⋮
φN,N

]      (28) 

Now we compute the mean value in the region and obtain the output Z as: 

Zφ̅
A = mean(φ̅)  
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Further, the max pooling operates on the region φ̅ and selects the max value as: 

Zφ̅
M = max(φ̅)  

Hence, the average pooling and max pooling were applied on the feature map obtained 
by the last convolution block. Next, the linear combination of max pooling and average 
pooling is applied as: 

 Zφ̅
L = α. mean(φ̅) + (1 − α)max(φ̅)     (29) 

Further, the linear combination of max-min pooling is obtained from the feature map 
as: 

Zφ̅
mm = α. min(φ̅) + (1 − α)max(φ̅)     (30) 

From the equation (26) and (27) the hybrid average pooling can also be obtained as: 

Zφ̅
h =  

Zφ̅
L +Zφ̅

mm

2
        (31) 

Here, the hybrid average pooling (Zφ̅
h ) is used to down-sample the feature map and 

passes it to the dense network for the classification. The stochastic pooling is introduced 
to conquer the down-sampling, overfitting and lack of generalization problem due to 
average and max pooling. In the proposed approach, instead of computing the average or 

the max, the output of the stochastic pooling (ZSP) is calculated via sampling from a 
multinomial distribution generated from the activation of each region φ̅.  

Here, in this process first the probability is estimated for each φi,j within the region φ̅ 

as [42]:   

Pi,j =
φi,j

sum(φ̅)
        (32) 

or, P =
φ̅

∑(φ̅)
     

Now, we select a location β within φ̅ in accordance with the probability (Pi,j) as: 

β~Prob(P1,1, P1,2, … … … . . P1,N, PN,1, … … … . . PN,N)         (33) 

Here, from the equation (33) the random value of the probability is selected. The 
selected probability value is mapped to region φ̅ for the selection of output activation value 
from the feature map as: 

Zφ
SP = φβ         (34) 

Therefore, the stochastic pooling uses non-maximal activation from the region  φ̅, 
instead of outputting the greatest value.  

In our proposed approach, after each block of convolutional layer, the batch 
normalization is used. It means that the batch normalization is actually doing the internal 
covariant shift. Thus, the batch normalization is used to normalize the internal layer’s input 
I = {xi}  over every mini-batch of size  m , in order to guarantee the batch normalized 
output  S = {yi} . Therefore, to compute the normalized input pattern the following 
computation is considered.  

The empirical mean μ and empirical variance σ2 over the training set I is obtained as: 

μI =
1

m
(∑ xi

m
i=1 )         (35) 

σA
2 =

1

m
∑ (xi − μI)

2m
i=1         (36) 

The input xi ∈ I is normalized to x̂i as: 

x̂i =
(xi−μI)

√σA
2 +α

         (37) 

Where, α is a constant and it is used to enhance the stability. In the proposed models, 

we considered α = 10−5. The sequence of operations i.e., convolutional layer filter, batch 
normalization and hybrid pooling is continue to each convolution block. Therefore, in 
order to have more expressive deep neural network. Thus, the transformation can be 
usually carried out as: Si = δ × x̂i + D, i = 1, 2, … … . , m     (38) 
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Here, the parameters δ and D are the two learnable parameters during learning. The 
transformed output Si ∈ S is then passed to the next layer and the normalized remains 
internal to current layer. 

Now, the output (SL) of last convolutional block is presented to the dense network or 
fully connected network and the output of second dense layer is presented to the 
classification layer. The network is trained using SGD with mini-batch size of m at a fixed 
constant momentum term value of αi and with the loss function on E as: 

E = − ∑ ∑ Sk
α(t)log(Sk(t))ki        (39) 

Where, Sk
α(t) and Sk(t) are the target and predicted value of tth training example at 

kth class respectively. The update rule for wi,j
l  can be computed as: 

wi,j
l (t) = wi,j

l (t − 1) + Dwi,j
l (t)       (40) 

and, Dwi,j
l = α1. Dwi,j

l − η
∂E

∂wi,j
l       (41) 

here, wi,j
l  represents the weight between Hi

l−1and Hj
l, ∂wi,j

l  denotes the gradient of wi,j
l  

and η represent the leaning rate. Hence, the proposed CNN architecture is trained with 
SGD for the fixed number of epochs for each mini-batch and it generate the desired 
classification for the given training set of environment dataset.   

4      Results and Discussion 

The simulated results have obtained on the UrbanSound8k dataset for the classification of 

environment sound with different pooling scheme to evaluate and analyzing the 

performance of both the CNN architectures. In our previous work [45], we compared 

different state-of-the-art CNN architectures using various feature extraction and 

augmentation approaches. A detailed comparative study of all the existing networks has 

been presented. The observed accuracy for the given dataset, using these methods with 

different feature extraction techniques, ranged from 73% to 82%. As, in our first proposed 

Convolutional Neural Network architecture, we considered different local pooling layers 

i.e. max pooling, average pooling, linear combination of max-average pooling, linear 

combination of max-min pooling, soft pooling, stochastic pooling, and max-min difference 

pooling. Basically, local Pooling layers in Convolutional Neural Networks (CNNs) serve 

the purpose of down-sampling or reducing the spatial dimensions (width and height) of the 

input patterns whereas in second proposed CNN architecture, we employed global pooling 

for dimensionality reduction and feature aggregation. The simulated results indicate that 

local pooling outperforms global pooling in term of sound classification accuracy. By 

reducing the dimensionality of the feature maps, global pooling accelerates the training 

process and reduces the overall computational load. Beside these pooling a newly type 

max-min difference pooling is also introduced to evaluate the performance of CNN. In this 

pooling scheme, the maximum activation within the pooling window is selected, as well 

as the minimum activation is also selected within the same window. Subsequently, the 

difference between the maximum and minimum activations is calculated, and this 

difference value is considered to select the activation for pooling. In the simulation work, 

we considered the seven different experiments for each CNN model with different pooling 

schemes to analyze the performance of CNN for classification of environment sounds. 

These experiments were conducted on the existing dataset sound samples.  

In the simulation design, we considered two optimizers, namely SGD and Adam [20], 

along with the categorical cross-entropy loss function. Adam is a variant of stochastic 

gradient descent that dynamically adjusts the step size for each dimension.  Both mini-

batch SGD and Adam optimizers have been used in various pre-trained CNN architectures 
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and have demonstrated their effectiveness for learning in terms of optimizing parameters 

and computational cost. We applied both optimizers to the proposed architectures. The 

simulation results indicate that the performance of Adam with first CNN architecture is 

more effective than that of the SGD optimizer. Therefore, we used the Adam optimizer for 

the final classification results. The performance evaluation of both CNN architectures was 

conducted with the Adam optimizer and is presented in Fig. 10. Additionally, the confusion 

matrix is shown for the Adam optimizer with our proposed pooling method, and Fig. 13 

presents the performance analysis for the Adam optimizer with the proposed pooling 

schemes. The performance of first CNN model for classification accuracy is presented in 

Fig. 8. 

 

Figure 8: Classification accuracy for first proposed CNN model with different type of 

pooling layers trained with Adam and SGD. The blue dot corresponds to the Adam 

optimizer and a red star-shaped character corresponds to SGD optimizer. 

The Fig. 8 shows performance of validation accuracy with different pooling methods i.e. 

max pooling, average pooling, and linear combination of max-average, linear combination 

of max-min, soft pooling and stochastic pooling with SGD optimizer shown with red 

asterisks and Adam optimizer shown with blue points. The training accuracy for different 

pooling methods and optimizers is shown Fig. 9. To address the need for statistical 

reliability, error bars representing the standard deviation across multiple runs have been 

added. The graph demonstrates that the proposed Max-Min Difference Pooling method 

achieves consistently higher accuracy compared to other pooling methods, with minimal 

variability, as indicated by the narrow error bars. This improvement in visualization 

provides a clearer understanding of the performance trends and the robustness of the 

proposed approach.  
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Figure 9: Comparison of training accuracy for proposed CNN model with different 

pooling layers and optimizers. 

The training performance with the entire pooling scheme with both the optimizers is almost 

same but the difference in performance can be observed for validation accuracy. The linear 

max-min pooling and newly proposed max-min difference pooling methods are 

approximately reflecting the same performance on Adam optimizer. The performance 

analysis on the basis of different parameters i.e., training accuracy, testing accuracy and 

F1-score for the first CNN architecture with both the optimizers can be shown in Table 4.    

Table 4: Training and Testing accuracy and F1- score for first proposed CNN model for 

both (Adam and SGD) optimizers for the UrbanSound8k dataset. 

Exp. 

No. 
Pooling Name 

Training 

Accuracy % 

Testing 

Accuracy % 
F1-Score % 

Adam SGD Adam SGD Adam SGD 

1. Max Pooling 99.42 97.53 83.11 82.59 82 80 

2. Average Pooling  99.75 95.94 80.82 80.30 80 79 

3. Linear Combination 

Max-Avg Pooling 
99.49 97.73 83.28 82.42 75 82 

4. Linear Combination 

Max-Min Pooling 
99.98 97.41 84.54 83.32 75 74 

5. Soft Pooling 99.48 97.12 81.68 80.03 80 79 

6. Stochastic Pooling 99.61 97.47 73.57 72.82 73 72 

7. Max-Min Difference 

Pooling 
99.71 96.19 83.57 80.30 82 80 

 

The performance analysis on the basis of different parameters i.e., training accuracy and 

testing accuracy for the second CNN architecture with global pooling can be shown in 

Table 5.      
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Table 5: Training and testing accuracy for proposed second CNN model for both (Adam 

and SGD) optimizers for the UrbanSound8k dataset. 

Ex

p. 

No. 

Pooling Name 

Training 

Accuracy % 

Testing 

Accuracy % 

F1-Score % 

Adam SGD Adam SGD 
Ada

m 
SGD 

1. Max Pooling 97.22 95.94 81.30 80.59 78 77 

2. Average Pooling  97.71 93.75 78.87 77.30 75 78 

3. Linear Comb. Max-

Avg Pooling 
97.65 95.42 82.05 80.42 79 76 

4. Linear Comb. Max-

Min Pooling 
97.67 95.41 82.32 81.45 80 76 

5. Soft Pooling 97.23 95.12 79.67 78.43 78 77 

6. Stochastic Pooling 97.33 95.47 71.51 70.78 74 70 

7. Max-Min 

Difference Pooling 
97.12 95.19 81.13 78.76 80 76 

 
The individual performances of different pooling schemes can be shown in Fig 10. 

The Fig. 10 is presenting the first CNN model accuracy for training & validation with all 
the considered pooling schemes. These figures also reflect the more stable behavior of 
linear combination max-min pooling and max-min difference pooling for both training and 
validation. 

  
Experiment 1: Proposed CNN model 

with ax Pooling 
Experiment 2: Proposed CNN model 

with Average Pooling 
  

  
Experiment 3: Proposed CNN model 

with linear combination max-avg 
pooling 

Experiment 4: Proposed CNN model 
with linear combination max-min 

pooling 
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Experiment 5: Proposed CNN model 
with soft pooling 

Experiment 6: Proposed CNN model 
with stochastic pooling 

  

 
Experiment 7: Proposed CNN model with max-min combination pooling 

 

Figure 10: Training & validation accuracy for all experiments on proposed first CNN 
model with different type of pooling evaluated on training and testing data 

 
The confusion matrices of proposed CNN model with linear combination max-min 

pooling and max-min difference pooling can be seen in Fig. 11 and Fig. 12. Hence, from 
all the obtained simulated results it can be verified that the performance of CNN model 
with linear combination max-min pooling and max-min difference pooling is better with 
Adam optimizer as comparison of other pooling methods. Linear combination max-min 
pooling exhibits 84.54% accuracy with Adam optimizer and 83.32% accuracy with SGD 
optimizer. Max-min difference pooling method exhibits 83.57% accuracy in classification 
with Adam optimizer and 80.30% accuracy with SGD optimizer. The stochastic pooling 
could not perform well. It has lowest accuracy with respect to other pooling methods for 
both the optimizers. Linear combination of max-min pooling performed well from the 
max-min difference pooling for the SGD optimizer. The F1-score of max-min difference 
pooling is better than all the other pooling methods including linear combination of max-
min pooling. Thus, it shows the better performance of max-min difference pooling in 
confusion matrix. In the present work, we also utilized the confusion matrix to evaluate the 
performance of CNN architectures. The confusion matrix provides detailed insights into 
model predictions by displaying the counts of true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). This helps identify class imbalances and 
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misclassifications, offering a clear understanding of the model's performance across 
different classes. To evaluate the robustness of the proposed convolutional neural network 
(CNN) architectures, the model was tested on noisy sound data. Confusion matrices were 
constructed for both the linear combination max-min pooling and the proposed max-min 
difference pooling, as shown in Fig. 11 and Fig. 12. Then, standard evaluation metrics were 
employed for statistical analysis to assess the performance of the proposed CNN 
architectures. Precision, Recall, F1-score, and average accuracy were computed using the 
following equations (42 to 45): 

 

Accuracy =  
TP+TN

TP+FP+FN+TN
        (42) 

Precision =  
TP

TP+FP
         (43) 

Recall =  
TP

TP+FN
         (44) 

F1 score =  
TP

TP+
1

2
(FP+FN)

         (45) 

 
  The obtained simulated results are interesting and indicate the different trends for 

classification, in training & validation process with different pooling schemes and different 
optimizers.  

 
 

Figure 11: Confusion matrix for 
proposed CNN with linear combination 

max-min pooling 

Figure 12: Confusion matrix for 
proposed CNN with max-min 

difference pooling 
  

For a better and detailed comparison, we have shown the True Negatives (TN), True 
Positives (TP), False Positives (FP), and False Negatives (FN) in Fig. 13 for all pooling 
methods. 
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Figure 13: TP, TN, FP, and FN parameters for different pooling methods used in 

UrbanSound8K audio dataset (Linear Combination of Max-Min Pooling and Max-Min 

Difference Pooling) 

The proposed CNN architectures were trained on the UrbanSound8K dataset using Google 

Colab with GPU acceleration (NVIDIA Tesla T4/K80/P100). With a batch size of 32 and 

100 epochs, the total training process required approximately 8-10 hours which is also 

includes preprocessing steps for feature extraction. The CNN architecture’s computational 

complexity is O(n), with a total of 68,010 trainable parameters and approximately 1.2 

million FLOPs per forward pass. These results demonstrate the efficiency and scalability 

of the proposed architecture with local pooling for urban sound classification, even on mid-

range hardware like Google Colab's GPUs. 

Based on our experimental results, it is clearly actionable that for practitioners to guide 

their choice of pooling methods, CNN architectures, and optimizers. For pooling methods, 

we recommend using max-min difference pooling for robust feature extraction in noisy 

environments, while traditional methods like max pooling and average pooling are suitable 

for computationally constrained tasks. For CNN architectures, the proposed architecture 

with max-min difference pooling is ideal for small to medium datasets, whereas deeper 

architecture. In terms of optimizers, Adam is preferred for fast convergence, while SGD 

with momentum is recommended for fine-tuning. Additionally, practitioners can 

incorporate dropout and regularization techniques to enhance model performance and 

prevent overfitting with the choice of Global and local pooling. 

5      Conclusion  

In this paper, we considered the two convolutional neural network models with different 

pooling schemes are used for the classification of environmental sound signals. In both the 

architectures different pooling schemes like max pooling, average pooling, linear 

combination of max-average, linear combination of max-min, soft pooling and stochastic 

pooling are used. Along with all these pooling schemes, the paper also explored the new 

pooling technique named as max-min difference pooling. All these pooling schemes are 

employed for both the CNN architectures with local, global pooling criteria to analyse the 

performances. Different simulation results on the various combinations of pooling and 

optimizers exhibited that the performance of both the CNN architectures with linear 

combination of max-min pooling is found better for both the optimizer but F1-score of 

max-min difference pooling for both optimizers is found better. The performance of both 

the CNNs with all the pooling methods is almost same for training accuracy but the 

difference occurred in testing accuracy. The performance analysis of CNN is exhibiting 
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that pooling scheme affects the accuracy in classification, but the choice of appropriate 

pooling method for the given problem is a critical task. Generally, the stochastic pooling 

minimizes the problem of max pooling and average pooling but in proposed experimental 

setup it did not perform well. The accuracy achieved by all pooling methods is found better 

in comparison of stochastic pooling. The location of pooling layer in CNN also influences 

the network performance. In our first architecture the local pooling is employed after each 

convolutional block which includes convolution layer and batch normalization layer. In 

second architecture the global pooling layer is used after last convolutional block followed 

by flatten layer and classification layer. In simulation the maximum classification accuracy 

of 84.54% is obtained. It is also observed that the global pooling scheme reduced the 

unknown parameters in the network and increases the convergence speed in training but 

the problem of local minima increases due to unavailability of dense layer. Furthermore, 

rearrangement and hybrid optimizers may explore to improve the accuracy for sound signal 

classification. Beside this, the different pooling methods may employ on different 

convolutional layer of the hybrid CNN architecture to analyse its performance. While the 

proposed CNN with global pooling shows strong performance, it has some limitations. 

Global pooling may lead to a loss of fine spatial details, which can impact the CNN 

architecture’s ability to capture subtle features necessary for distinguishing similar classes. 

Additionally, without dense layers, the model has reduced capacity and flexibility, limiting 

its effectiveness on tasks that require complex feature interactions or small datasets. 

Therefore, the proposed pooling scheme, which incorporates a local pooling mechanism 

and two dense layers, is found to be more effective for the classification of sound data. It 

provides better accuracy and minimizes the problem of overfitting, which other existing 

pooling schemes have suffered from. Thus, it is further recommended to use the proposed 

max-min difference pooling with the convolutional layers, followed by two dense layers, 

as it provides better performance for the classification of the UrbanSound dataset. Future 

work could explore hybrid architectures to balance efficiency with enhanced representation 

learning and we plan to extend our evaluation to additional datasets, such as ESC-50 and 

AudioSet, and explore real-world sound samples to further validate our findings. 
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